

APPENDIX B - 2012 JORC Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Co	mmentary				
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	•	operators. A to purposes of the drill holes for 1	al of 768 drill hole Mineral Resource	es for a tota ce Estimate d by Cygnu	ng completed by Cygnus and of 308,314 m have been in a lincluded within these figures. The below table outlines to	ncluded for the es is a total of 35
	not be taken as initially the bload meaning of sampling.			Deposit	Holes	Metres	
				Corner Bay	403	207,920	
				Cedar Bay	37	33,360	
				Joe Mann	51	17,622	
				Devlin	176	19,112	
			Golden Eye	101	30,300		
				Total	768	308,314	
		•	supervision of a responsible and	a registered profe d accountable for	ssional geo the plannin	ougamau Project was comp logist as a Qualified Person g, execution, and supervision ality assurance programs an	("QP") who is on of all exploration
		•	All Cygnus drill	ing reported is NO	Q size (47.8	mm diameter).	
		•				ting back to the 1950s. All d BQ and NQ sized core.	rilling was
		•				post 2017) was conducted u of a geologist from Doré Co _l	
	Include reference to measures taken to ensure sample representativity and the appropriate calibration of any	•		ection, core loggir		sity determinations were co sional geologist.	mpleted by Cygnus
	measurement tools or systems used.	•				ging and is sawn using a dia lengthwise into equal halves	
		•	Half of the cut of tag.	core is placed in o	clean individ	lual plastic bags with the ap	propriate sample
		•				ists with oversight from the -4% of total samples with a	

Criteria	JORC Code explanation	Co	mmentary
			duplicates taken on half split core) that were inserted into the sample batches are verified against their certified values and are deemed a pass if they are within 3 standard deviations of the certified value. The duplicates are evaluated against each other to determine mineralization distribution (nugget). If there are large discrepancies in the check samples, then the entire batch is requested to be re-assayed. The samples are then placed in bags for shipment to the offsite laboratory's facility. The remaining half of the core is retained and incorporated into Cygnus' secure core library
			located on the property.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	•	Industry standard sampling practices were used with sample lengths ranging from 0.3 m to 1.0m and respected geological contacts. Sample tags were placed at the beginning of each sample interval and the tag numbers were recorded in a centralised database. Sampling practice is considered to be appropriate to the geology and style of mineralisation.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether	•	Diamond core was drilled using surface diamond rigs with industry recognised contractors Miikan Drilling. Miikan is a joint venture between Chibougamau Diamond Drilling Ltd., the First Nations community of Ouje-Bougoumou and the First Nations community of Mistissini both located in the Eeyou Istchee territory.
	core is oriented and if so, by what method, etc).	•	Drilling was conducted using NQ core size.
		•	Directional surveys have been taken at 50m intervals.
		•	All historic drilling conducted at the Chibougamau Project was conducted using diamond drill rig with both BQ and NQ sized core.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	•	Diamond core recovery was measured for each run and calculated as a percentage of the drilled interval.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	•	Overall, the core recoveries are excellent in the Chibougamau area. As a result, no bias exists.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.		

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All core was geologically and geotechnically logged. Lithology, veining, alteration and mineralisation are recorded in multiple tables of the drillhole database.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Geological logging of core is qualitative and descriptive in nature. Historic drilling has been recorded on paper logs which have been scanned and digitised into MS Excel by Cygnus and other professional geologists.
	The total length and percentage of the relevant intersections logged.	100% of the core has been logged.All 308,314m of drilling included in the MRE has been logged
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 The NQ diameter the core was sawn in half following a sample cutting line determined by geologists during logging and submitted for analysis on nominal 1m intervals or defined by geological boundaries determined by the logging geologist. Each core sample is assigned a tag with a unique identifying number. Sample lengths are typically one metre but can be depending on zone mineralogy and boundaries. This sampling technique is industry standard and deemed appropriate. Sample sizes are considered appropriate to grain size of the materials being sampled. For historic drilling: the marked drill hole core sections were split using a hydraulic core splitter. Half core was put in plastic bags numbered on the outside with a pen marker. A sample tag was placed inside the bags and the bags were folded and stapled. The sample bags were then sent to the Copper Rand mine laboratory for analysis. The remaining core was retained for reference.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Sample (NQ size half core) preparation and fire assay analysis were done at Bureau Veritas Commodities Canada Ltd ("BV") in Timmins, Ontario, and ICP-ES multi-elements analysis was done at BV in Vancouver, B.C. Samples were weighed, dried, crushed to 70% passing 2 mm, split to 250 g, and pulverized to 85% passing 75 µm. Samples are fire assayed for gold (Au) (50 g and 30 g) and multi-acid digestion ICP-ES finish, for 23 elements (including key elements Ag, Cu, Mo). Samples with visible gold or likely to have gold grains are analysed with metallic screen fire assay. Samples assaying >10.0 g/t Au are re-analysed with a gravimetric finish using a 50 g and 30 g charge. Samples assaying >10% Cu are re-analysed with a sodium peroxide fusion

Criteria	JORC Code explanation	Co	ommentary
			with ICP-ES analysis using a 0.25 g charge.
		•	Historically, samples were delivered to the in-house laboratory at Copper Rand. Control samples were sent to an external laboratory.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	•	None used.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	•	At Bureau Veritas, laboratory QC procedures involve the use of internal certified reference material as assay standards, along with blanks, duplicates and replicates.
		•	For historic assays completed at the on-site laboratory, samples were transferred into metal pans. Paper bags were prepared, and the sample numbers were recorded on them. The samples were crushed to -0.25 in (-6.35 mm) and split to keep 100 g to 200 g. Rejects were put back into the plastic bags and stored.
		•	The split was pulverized with a disk pulverizer and the pulp was stored in the paper bag. A 5g sample was weighed and put in a beaker. Trays of 35 beakers were used. The samples were dissolved using a mixture of 20mL of hydrochloric acid (HCI) and 10 mL of nitric acid. The trays were then heated for five minutes and left to sit and cool for 45 minutes.
		•	The solution was vacuum filtered into Erlenmeyer flasks and levelled to 100 ml. The Erlenmeyer flasks were mixed for one minute. The solution was then placed into test tubes, 35 test tubes per tray, and diluted with water at a ratio of 1:15.
		•	The test tubes were subjected to analysis by atomic absorption for copper, gold, and silver. Results were displayed on the screen of the atomic absorption analyzer. There was no electronic storage of results. Assay results were manually transcribed onto assay sheets by the operator. They were later entered into computer spreadsheets for further processing by the geology department. The handwritten assay sheets were archived in files at the laboratory.
Verification	The verification of significant intersections by either	•	Verification of sampling was made by Cygnus and other professional consultant geologists.
of sampling and assaying	and	•	Verification of historic original drill hole logs and assay data was made by Cygnus and other professional geologists.
22007.119	The use of twinned holes.	•	No holes are twinned.

Criteria	JORC Code explanation	Со	mmentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)	•	All logging data was completed, core marked up, logging and sampling data was entered directly into the database.
	protocols.	•	The logged data is stored on the site server directly.
		•	For historic logs, all data is recorded on pdf reports much of which are filed with the Quebec government - Ministry of Natural Resources and Forests.
	Discuss any adjustment to assay data.	•	There was no adjustment to the assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	•	The location of the drill holes and the aiming points for the orientation of the drill holes were indicated on the ground using identified stakes. The stakes marking the location of the drillholes were set up and located with a Garmin GPS model "GPSmap 62s" (4m accuracy).
		•	Surveys are collected using a DeviGyro OX NQsingle-shot electronic instrument with readings collected at intervals of approximately every 30m downhole plus a reading at the bottom of the hole.
		•	The location of the historic drill holes and the aiming points for the orientation of the drill holes are recorded on the historic drill logs and associated maps.
	Specification of the grid system used.	•	The grid system used is UTM NAD83 (Zone 18).
		•	Historically, the grid system used was the Copper Rand mine grid which has been converted to UTM NAD83 (Zone 18).
	Quality and adequacy of topographic control.	•	A Digital Terrane Model ("DTM") has been used to accurately plot the vertical position of the holes, which is considered to provide an adequate level of topographic control.
Data	Data spacing for reporting of Exploration Results.	•	The drill spacing for recent drilling is considered appropriate for this type of exploration.
spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve	•	Mineral Resources are based on a maximum of 120 m drill spacing. The data spacing and distribution is considered sufficient to establish geological and/or grade continuity appropriate for the Mineral Resource and classifications to be applied.
	estimation procedure(s) and classifications applied.	•	Core is sampled to geology contacts; sample compositing is not applied until the estimation stage.
	Whether sample compositing has been applied.	•	Core is sampled to geology contacts; sample compositing is not applied until the estimation stage
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	•	Recent drilling is orientated approximately at right angles to the currently interpreted strike of the known interpreted mineralisation.
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to	•	No bias is considered to have been introduced by the existing sampling orientation. The drill holes are angled as close as possible to perpendicular to the mineralised structures.

Criteria	JORC Code explanation	Commentary
	have introduced a sampling bias, this should be assessed and reported if material.	Mineralised intervals are reported as downhole lengths not true widths
Sample security	The measures taken to ensure sample security.	 Core was placed in wooden core boxes close to the drill rig by the drilling contractor. The core was collected daily by the drilling contractor and delivered to the secure core logging facility. Access to the core logging facility is limited to Cygnus employees or designates.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of sampling techniques or data have been undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The data reported within this announcement is from the Chibougamau Project. The Chibougamau Project consists of 3 properties which include: Copper Rand, 14,383 ha (15 mining concession and 311 exploration claims). Includes Cedar Bay, Golden Eye and Colline. Corner Bay – Devlin (1 mining license, 134 exploration claims owned 100% by CBAY and 17 claims owned 56.4% by CBAY/43.6% Pan American Silver) Joe Mann (2 mining concessions, 82 claims owned 100% by CBAY, and 68 claims and 1 mining concession owned 65% by CBAY/35% by SOQUEM) CBAY Minerals Inc. ("CBAY"), a wholly owned subsidiary of Cygnus, is the owner of all claims and leases, except where otherwise noted above. The properties collectively making up the Project are in good standing based on the Ministry of Energy and Natural Resources (Ministère de l'Énergie et des Ressources Naturelles) GESTIM claim management system of the Government of Québec.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenure is in good standing.
Exploration Acknowledgment and appraisal of exploration by other parties. parties	The Chibougamau Project comprising Corner Bay, Devlin, Cedar Bay and Joe Mann has seen an extensive exploration history dating back to the early 1900s. The Preliminary Economic Assessment (as referred to in the Company's announcement of 15 October 2024) provides a detailed history of the exploration activities undertaken by previous explorers.	
		Corner Bay was first identified as a prospect in 1956
		 1956 – 1972 eight drilling programs totalling 1,463 m and various geophysical and electromagnetic (EM) surveys
		 1973 – 1981 Riocanex and Flanagan McAdam: ground geophysical surveys and 43 diamond drill holes
		 1982 – 1984 Riocanex and Corner Bay Exploration: 38 drill holes and metallurgical test work
		 1988 – 1991 Corner Bay Exploration: diamond drilling, geophysical surveys and geological characterisation with initial MRE
		 1992 – 1994 SOQUEM optioned and acquired a 30% interest, and completed

Criteria	JORC Code Explanation	Commentary
		diamond drilling
		 1994 Explorations Cache Inc and Resources MSV Inc: diamond drilling
		 2004 – 2006 GéoNova and MSV: 98 diamond drill holes and first Technical Report on the Corner Bay project reporting a MRE
		 2007 – 2009 Campbell: diamond drilling and bulk sample
		 2012 - 2019 CBAY / AmAuCu: diamond drilling and MRE
		 Devlin identified in 1972 by airborne survey flown by the MERN
		 1979 – 1981 diamond drilling, geophysical surveys
		 1981 development commenced
		 Joe Mann identified in 1950 with the commencement of mining activities occurring in 1956
		 The Joe Mann mine operated underground during three different periods from 1956 to 2007
		 In July 2012, Resources Jessie acquired the Joe Mann mine property, but conducted only surface exploration work
		 Cedar Bay was discovered prior to 1927 by Chibougamau McKenzie Mines Ltd
		 From initial discovery to 2013 various surface and underground drilling campaigns and geophysical surveys undertaken by various companies
		 Colline was first discovered with mapping and sampling and then drilled in the 1950s with follow up drilling in 1955.
		 In the 1950s a shaft was sunk but the deposit was never mined
		 The deposit was later tested with three drill holes and six regional drill holes throughout two drilling campaigns in 1984 and 1986/87
		 Exploration at Colline has been halted historically with the discovery of and focus on other deposits in the region
		 Golden Eye (previously known as Dore Ramp) was drilled in a few different phases from 1984 to 1992.
		 A total of 47 drill holes from surface are reported during that period
		 A double ramp of approximately 1 kilometre was excavated in 1991-92 to a vertical depth of 160 meters
		 Underground drilling campaign of 46 holes totalling 10,200 meters tested the deposit mainly to a depth of 240 meters (only five holes tested the deposit between 300 and 600 meters)

Criteria	JORC Code Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The Chibougamau Project is located at the northeastern extremity of the Abitibi Sub province in the Superior province of the Canadian Shield. The Abitibi Subprovince is considered to be one of the largest and best-preserved greenstone belts in the world and hosts numerous gold and base metal deposits.
		 The Chibougamau region is located in the northeastern part of the AGB of the Superior Province. The Archean rocks of the Chibougamau region were deformed and metamorphosed from greenschist to amphibolite facies during the Kenoran orogeny.
		 The Chapais-Chibougamau area recorded major intrusive activities of various nature, genetically linked to the volcanism and tectonism periods of the geological history of the region. The three important intrusive bodies of the region are: 1) the Doré Lake Complex (DLC); 2) the Chibougamau Pluton; and 3) the differentiated mafic to ultramafic sills of the Cumming Complex that formed in the second volcanic cycle.
		• The DLC hosts the Corner Bay, Cedar Bay and Golden Eye deposits as well as several other regional copper-gold deposits. It dates to 2,728.3 ± 1.2 Ma (Mortensen, 1993) and is a synvolcanic layered intrusion emplaced during the first volcanic cycle in the region between the Obatogamau and Waconichi Formations. DLC is a mafic to ultramafic intrusion with a tholeiitic to calc-alkaline magmatic affinity (Allard, 1976; Daigneault and al., 1990; Ahmadou and al., 2019).
		• The Chibougamau Pluton hosts the Devlin deposit. The pluton was emplaced in the DLC and part of the Waconichi Formation; however, it is coeval with the second volcanic cycle of the Roy Group. The Chibougamau Pluton is composed of an abundance of tonalite and diorite dikes, pegmatites, feldspar-phyric units, as well as hydrothermal and magmatic breccia; all of which point to a shallow emplacement depth (Mathieu and Racicot, 2019). The pluton occupies the core of the Chibougamau anticline, which is part of the major folding structures of the region
		 The Joe Mann deposit is a structurally controlled deposit hosted by the Opawica-Guercheville deformation zone. This major east-west trending deformation corridor is approximately 2 km wide and extends for over 200 km (Tait, 1992a; Pilote 1998; Leclerc et al. 2012). The structure cuts the mafic volcanic rocks of the Obatogamau Formation in the north part of the Caopatina Segment.
		• The Corner Bay, Cedar Bay and Golden Eye deposits are located on the flanks of the DLC. These deposits are typical shear hosted copper-gold veins situated within the host anorthosite which is sheared and sericitized over widths of 2 to 25m. The mineralization is characterized by veins and/or lenses of massive to semi-massive sulphides associated with a brecciated to locally massive quartz-calcite material. The sulphides assemblage is composed of chalcopyrite, pyrite, and pyrrhotite, with lesser amounts of molybdenite and sphalerite. Late remobilized quartz-chalcopyrite-pyrite veins occur in a common wide halo around the main mineralization zones.

Criteria	JORC Code Explanation	Co	mmentary
		•	The Devlin deposit is a hosted in the Chibougamau Pluton and is characterized by flat- lying undulating magmatic massive sulphide veins occurring at a depth of less than 100m from surface. The deposit is hosted by a hydrothermal breccia, consisting of massive chalcopyrite-pyrite-quartz +/- carbonate vein, which pinches and swells. Minor hematite and magnetite are present locally; both being erratically distributed.
		•	The gold mineralization at the Joe Mann mine is hosted by decimetre scale quartz-carbonate veins. The veins are mineralized with pyrite, pyrrhotite, and chalcopyrite disposed in lens and veinlets parallel to schistosity, and occasionally visible gold. The veins are dominated by vitreous white quartz with minor plagioclase and iron carbonate. They are intensely brecciated and often boudinaged and folded. Furthermore, these veins are characterized by their laminated or banded structure, consisting of alternating ribbons of quartz and mineralized wall rock. The majority of the vein sulphide mineralization is contained in these wall-rock fragments.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	•	No new exploration results are reported.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 		
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	•	No new exploration results are reported.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	•	No new exploration results are reported.

Criteria	JORC Code Explanation	Commentary
	The assumptions used for any reporting of metal	Metal equivalents for the MRE have been calculated as follows:
	equivalent values should be clearly stated.	 Individual grades for all metals included in the metal equivalent calculation are set out i Appendix A.
		Appendix A. At a copper price of US\$9,370/t, gold price of US\$2,400/oz and silver price of US\$30/o The following metal equivalents formulas have been used: Corner Bay CuEq(%) = Cu(%) + (Au(g/t) x 0.68919) + (Ag(g/t) x 0.00884) AuEq (g/t) = Au(g/t) + (Cu(%) x 1.45097)+(Ag(g/t) x 0.01282) Cedar Bay CuEq(%) = Cu(%) + (Au(g/t) x 0.78730)+(Ag(g/t) x 0.00905) AuEq (g/t) = Au(g/t) + (Cu(%) x 1.27016) + (Ag(g/t) x 0.00149) Devlin CuEq(%) = Cu(%) + (Au(g/t) x 0.62517) + (Ag(g/t) x 0.00862) AuEq (g/t) = Au(g/t) + (Cu(%) x 1.59957)+(Ag(g/t) x 0.00379) Golden Eye CuEq(%) = Cu(%) + (Au(g/t) x 0.78730)+(Ag(g/t) x 0.00905) AuEq (g/t) = Au(g/t) + (Cu(%) x 1.27016) + (Ag(g/t) x 0.00149) Joe Mann CuEq(%) = Cu(%) + (Au(g/t) x 0.72774) AuEq (g/t) = Au(g/t) + (Cu(%) x 1.37411) Metallurgical recovery factors are specific to the different deposits and have individuall been applied to the metal equivalents calculations by deposit. Assumed metallurgical recoveries are summarised by deposit in the below table Metallurgical Assumptions Applied to Cut Off Grade Element Cedar Bay Golden Eye Corner Bay Devlin Joe Mann Au 87% 87% 78% 73% 84%
		Cu 91% 91% 93% 96% 95%
		Ag 80% 80% 80% 80% 80%
	Metallurgical recovery factors have been applied to the MRE based upon historical production at the Chibougamau Processing Facility and the metallurgical results contained in Cygnus' announcement dated 28 January 2025.	

Criteria	JORC Code Explanation	Commentary
		 It is the Company's view that all elements in the metal equivalent calculations have a reasonable potential to be recovered and sold.
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	No new exploration results are reported.
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Maps and sections are included in the body of this release as deemed appropriate by the competent person.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No new exploration results are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No new exploration results are reported.
	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or	 The Company plans to conduct drill testing of additional mineralisation as well as step out drilling of existing lodes. More information is presented in the body of this report.
Further work	large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 The Company continues to identify and assess multiple other target areas within the property boundary for additional resources.

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying	 Cygnus sampling and logging data is digitally entered into an AcQuire database using a laptop. There are checks in place to avoid duplicate holes and sample numbers.
	errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	 All holes used in the resource estimate have been validated for collar, downhole survey, geology and sample integrity by Cygnus geologists using a combination of software (Leapfrog, Micromine) validation tools and verification through core photography spot checks.
		 A spatially and temporally representative set of assay certificates for Corner Bay, Devlin, Joe Mann and Cedar Bay, or scanned paper records in the case of historical results. were reviewed against the respective drill hole databases with attention to assay values, interval recording, and, in the case of historical results, value conversion (imperial to metric). No significant or impactful errors were identified by SLR. This verification work first supported the previous 2022 Mineral Resource estimate.
		 Golden Eye historical paper records (scanned) were spot checked against assay results in the current database and no major or impactful discrepancies were found.
		 The CP has also reviewed and validated all assay results for the deposits acquired since the Mineral Resource estimate of 2022 against certificates provided by the client.
		 It is the Competent Person's opinion that the results and controls put in place by Cygnus comply with industry standard and are adequate for the purposes of Mineral Resource estimation.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	 SLR Senior Geologist Marie-Christine Gosselin, P.Geo., the Competent Person (CP) for the Estimation and Reporting of Mineral Resources at the Chibougamau Project last visited the site between August 25 and August 27, 2025. The CP first visited the Corner Bay and Devlin projects in 2021.
		 The CP reviewed site procedures and processes related to data collection for the preparation of the Resource estimate.
		 The site visit confirmed that appropriate industry-standard practices are being followed and that the data used in the resource estimation is collected and managed in a professional and reliable manner.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made.	The Corner Bay and Cedar Bay deposits are examples of Chibougamau-type copper-gold deposits, which typically host massive to semi-massive pyrite-chalcopyrite-pyrrhotite-sphalerite- molybdenite sheared quartz veins. The Devlin deposit is a copper-rich veins-hosted deposit in a polygenic igneous breccia. The Joe Mann and Golden Eye deposit are

Criteria	JORC Code explanation	Co	ommentary
	The effect, if any, of alternative interpretations on Mineral Resource estimation.		categorized as a greenstone-hosted quartz-carbonate vein and veinlet style deposit, a subtype of lode-gold deposits.
	The use of geology in guiding and controlling Mineral Resource estimation.	•	The good level of geological confidence at the Projects is driven by the extensive mining history, the quality and availability of support information such as underground mapping
	The factors affecting continuity both of grade and geology.		and detailed production history, to the project's typical assemblages, and regional deposit parallels.
		•	Validated diamond drill hole data was used to inform the interpretation including lithological, alteration, weathering, mineralisation and structural logging.
		•	The CP believes that, given the characteristics of the deposit, alternative geological interpretations are not expected to materially differ from the present model, though minor variations remain possible.
		•	Diamond core enabled characterisation of mineralisation, geological and structural contacts orientation measurements helped to inform orientation of sulphide bearing veins or lodes with semi-massive sulphide lodes and support their correlation across drill holes.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and		The Mineral Resource for Corner Bay area has overall dimensions of dimensions of 1,050 m (N-S) by 685m (E-W) and has been interpreted to extend from near surface to 1,350 m depth below surface.
	lower limits of the Mineral Resource.	•	The Mineral Resource for Cedar Bay area has overall dimensions of dimensions of 350 m (NW-SE) by 120 m (NE-SW) and has been interpreted from 820 m to 1,320 m depth below surface.
		•	The Mineral Resource for Joe Mann area has overall dimensions of dimensions of 420 m (NE-SW) by 320 m (NW-SW) and has been interpreted from 800 m to 1,200 m depth below surface.
		•	The Mineral Resource for Devlin area has overall dimensions of dimensions of 940 m (E-W) by 740 m (N-S) and has been interpreted from 10 m to 110 m depth below surface.
		•	The Mineral Resource for Golden Eye area has overall dimensions of dimensions of 580 m (NW-SE) by 100 m (NE-SW) and has been interpreted from 80 m to 450 m depth below surface.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining,	•	Geological and mineralisation constraints were generated by Cygnus geological staff in Leapfrog software. The constraints were reviewed by the CP and edits undertaken by Cygnus.
-	interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a	•	The updated constraints were subsequently used in geostatistics, variography, block modelling, and grade interpolation.
	description of computer software and parameters used.	•	The projects are not operational and the results are not validated against reconciliation data.

Criteria	JORC Code explanation	Comm	nentar	у														
Criteria	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of byproducts. Estimation of deleterious elements or other nongrade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables.	• 9 Cl • M ap to • A pr • Ca win co	r Bay minera BAD3a ineralis oproxir the na cappir obabil Cu v	allisation, CB, caresing strategy plots of the coupling of the	AD4, a wire 2 m m tuned ategy ots, ar appear	CBUD frames ninimu conom on ray nd dec d at 16 s have opper, old, an n, exce ls sma	o, WV, so were my thick hole wassaile and silve minir 3.7% d silve pt CB miller the manner of the miller the m	WV2, e delinknesse or 60 ays wa alysis; u at 5 mal eff for go er assa	eated . Wire . Wire . m be as dev g/t Au fect or ld, and ay valu /hich v	using frame eyond and A the gd 0.61 ues we we have been	a 1% bound the last dusing at 8 lobal of the core core core and the core core core and the core core core core core core core cor	CuEq dary w st ecor g basic 0 g/t, to outcon silver. mposit ited to tribute	cut-of vas extended as extended continued to the continued to the continued equation of the cont	if grade tended drill ho stics, h estima th a pe two m idth in ally for	e and display half to be and display half to be a tion display half to be and display half to be a tion display half to be	an he dis rams, omain metal itercep its. wo me	tance log s. loss ots tre	
	Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	• G so pa ei	ock more and a reade in a reade i	odellii Iterpo (ID²) Seai Sing d al rot	ng, ar or cu or cl ch ell ynam ation ons an	nd mod was pled (I lipses ic anis	del val perfori D³) int for gra sotrop	lidation med of terpola ade in y (DA) 0°/90°	n were n pare ation a terpola) or ali ° - dip/	e carrie ent blo approa- ation w gned w dip az	ed out cks us ch with vere and with the	using a h prognisotrone defa	Leapf two-pa gressiv opic fo ault co). Sear	frog Eo ass invely lar ar all zo ordina och elli	dge. verse of ger infones a te sys pse di	e distance interpolation and oriented ystem, without dimensions w.		
		Domai	Meth	1 st Pa							2 nd Pas	ss						
		n	od	X- axis (m)	Y- axis (m)	Z- axis (m)	Orien tation	Min No.	Max No.	Max per DH	X- axis (m)	Y- axis (m)	Z- axis (m)	Orien tation	Min No.	Max No.	Max per DH	
		CBAD 1	ID ²	100	80	50	DA	7	20	4	200	160	100	DA	6	20	3	
		CBAD 2	ID ²	80	80	50	DA	7	20	3	160	160	100	DA	6	20	3	
		CBAD 3	ID ²	80	80	50	DA	3	20	-	160	160	100	DA	2	20	-	
		CBAD 3a	ID ²	125	100	50	DA	7	20	3	250	200	100	DA	4	20	3	

Criteria	JORC Code explanation	Comm	nentar	у													
		CBAD 4	ID ²	115	115	50	DA	7	20	3	230	230	100	DA	4	20	3
		WV,W V2	ID ²	50	25	80	0/0/9	7	20	3	100	50	160	0/0/9	4	20	3
		WV3	ID^2	80	40	128	0/0/9 0	7	20	3	160	80	256	0/0/9 0	4	20	3
		CBUD	ID^3	135	110	75	DA	3	20	-	270	220	150	DA	2	20	-
		gr • Th x ap • Bl • • Bl sn cc • No	ade cane par 1.25m opropr ock m Visu Star and Swar ock granear sorrelation assumbles.	alcula ent blo , and iate fo odel v ual ins tistical wher ath plo eframe rades ignific on an	tion. ock si the bl or the valida spection avail ot com e to b cantly id volu ons ha	izes of lock medical deposition when of operisonable, inparisonable deposition in the deposition of th	f 5m(Xnodel value of the composition of the composi	() x 5n was rometry mplete osite volum laccolled gation ade ab	n(Y) x tated and p d usir ersus compo ID an e com rd with grades showe	5m(Z 5° (Le oropos ng indu block osite a d NN a pariso n drillir . Swa ed valu	eapfroged mirustry signades	been rotatining matandars for cock granen av samps generalis gener	sub-connount on the connount of technology of the connount of the connection of the conn	elled to the bloom of the bloom	o 1.25 ock sizes incluses inclused usinced usinced usinced not approximate a correlation of the correlation	m x 0. es are uding: ilver ng ID, opear d good ation.	.625m NN, to
		ар	proxir	mate 1	1.5 m	minin	num th	ickne	ss. Wi	refran	a 1% ne bou n beyor	ndary	was e	extend	ed ha	f the	
		• A	cappii	ng stra	ategy	on ra		ay was	s deve		using						
											0 g/t, f						
			apped thin e				d silve	er assa	ay valı	ues we	ere cor	nposit	ted to	full-wi	dth int	ercept	ts
											ng vari ed out						,

Criteria	JORC Code explanation	Commentary
		 Grade interpolation was performed on parent blocks using a single-pass inverse distance cubed (ID³) interpolation approach. Search ellipses for grade interpolation were isotropic for all zones.
		 Hard boundaries were utilised for all domains.
		 The parent block sizes of 5 m(X) x 5 m(Y) x 5 m(Z) have been sub-celled to 1.25 m x 1.25 m x 1.25 m. The block sizes are appropriate for the deposit geometry and proposed mining methods.
		 Block model validation was completed using industry standard techniques including:
		 Visual inspection of composite versus block grades for copper, gold, and silver
		 Statistical comparison between composite and block grades estimated using ID and NN
		 Wireframe to block model volume comparison
		 No assumptions have been made about correlation between variables in the estimate.
		Joe Mann
		 3 mineralisation domains are defined in the current model.
		 Mineralisation wireframes were delineated using a nominal Au grade of 2.0 g/t Au and a 1.2 m minimum thickness. Wireframe boundaries were extended half the distance to the nearest sub-economic drill hole or to half the local drill hole spacing away from data.
		 A capping strategy was developed for the raw assays using basic statistics, log probability plots and decile analysis to determine a cap for each domain independently.
		 Au was capped at 45 g/t for all domains
		 Cu was capped at 2.5% for all domains
		 High grade restrictions were set at 20 g/t Au greater than 18.75 m in the x-axis and 75 m in the y-axis on the second pass of ID³.
		 Capped gold and copper assay values were composited to full-width intercepts within each domain.
		 Exploratory data analysis, trend analysis, including variography and trend contouring, block modelling, and model validation were carried out using Leapfrog Edge.
		 Grade interpolation was performed on a parent block basis using ID³ and two progressively larger interpolation passes. Search ellipses for grade interpolation were anisotropic for all zones and designed to mimic the observed and historically understood grade trends.
		 Hard boundaries were utilized for all domains.

Criteria	JORC Code explanation	Commentary
		 Two block models with only the rotation differing were used. The parent block sizes of 5 m (X) x 1 m (Y) x 5 m (Z) have been sub-celled to 1.25 m x 0.25 m x 1.25 m respectively.
		 Block model validation was completed using industry standard techniques including:
		 Visual inspection of composite versus block grades for copper, gold and silver
		 Statistical comparison between composite and block grades estimated using ID and NN
		 Swath plots
		 Wireframe to block model volume comparison
		 No assumptions have been made about correlation between variables in the estimate.
		Devlin
		 4 mineralisation domains (3 upper, 1 lower) are defined in the current model.
		 Mineralisation was delineated using a nominal 1% Cu cut-off and a 1.8 m minimum thickness. Wireframe boundaries are extended half the distance to the nearest sub- economic drill hole and extended to half the local drill spacing away from data.
		 A capping strategy was developed for the raw assays using basic statistics, log probability plots, and decile analysis to determine a cap for each domain independently.
		 Au was capped at 2.5 g/t for the Lower Zone
		 Au was capped at 1.5 g/t for the Upper Zone
		 Cu was capped at 15.0% for the Lower Zone
		 Cu was capped at 10.0% for the Upper Zone
		 Capped gold and copper assay values were composited to full-width intercepts within each domain.
		 Exploratory data analysis, trend analysis, including variography and trend contouring, block modelling, and model validation were carried out using Leapfrog Edge.
		 Grade interpolation was performed on a parent block basis using ID² and three progressively larger interpolation passes. Search ellipses for grade interpolation were anisotropic for all zones and designed to mimic the observed geometry of the mineralisation.
		Hard boundaries were utilised for all domains.
		 The block model uses parent block sizes of 10 m (X) x 10 m (Y) x 2.5 m (Z) and has been sub-celled to 5 m x 5 m x 1.25 m respectively.
		 Block model validation was completed using industry standard techniques including:
		 Visual inspection of composite versus block grades for copper, gold, and silver

Criteria	JORC Code explanation	Commentary
		 Statistical comparison between composite and block grades estimated using ID and NN
		 Swath plots
		 Wireframe to block model volume comparison
		No assumptions have been made about correlation between variables in the estimate.
		Golden Eye
		10 mineralisation domains are defined in the current model.
		 Mineralisation wireframes were delineated using a 1% CuEq cut-off grade and an approximate 1.5 m minimum thickness. Wireframe boundary was extended half the distance to the nearest uneconomic hole or 60 m beyond the last economic drill hole.
		 A capping strategy on raw assay was developed using basic statistics, histograms, log probability plots, and decile analysis;
		 Au was capped at 40 g/t, Cu at 12%, and Ag at 60 g/t, for all estimations domains.
		 Capped gold, copper and silver assay values were composited to full-width intercepts within each domain.
		 Exploratory data analysis, trend analysis, including variography and trend contouring, block modelling, and model validation were carried out using Datamine Supervisor.
		 Grade interpolation was performed on parent blocks using a single-pass ID³ interpolation approach. Search ellipses for grade interpolation were isotropic for all zones.
		Hard boundaries were utilised for all domains.
		 The parent block sizes of 5 m(X) x 5 m(Y) x 5 m(Z) have been sub-celled to 1.25 m x 1.25 m x 1.25 m. The block sizes are appropriate for the deposit geometry and proposed mining methods.
		Block model validation was completed using industry standard techniques including:
		 Visual inspection of composite versus block grades for copper, gold, and silver
		 Statistical comparison between composite and block grades using ID and NN
		 Wireframe to block model volume comparison
		No assumptions have been made about correlation between variables in the estimate.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages are estimated on a dry basis.

Criteria	JORC Code explanation	Commentary										
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	bee of the control of	ten applie 1.2% Ci 1.5% Ci 1.8 g/t Ai 2.0 g/t Ai 2.0 g/t Ai UEq and Ai CuEq = CuEq = AuEq = Golden AuEq = the cut-off goodsing, rward-look- ilculations Metal P Metal P The follograde:	d for reporting uEq for Corno uEq for Devli AuEq for Ced Au Eq for Joe uEq formulas grade Cu (% grade Au (g/ Eye and Cec grade Au (g/ grades have le recovery, an king forecast including: rice Copper: rice Gold: US rice Silver: U	g: er Bay n ar Bay and (Mann s are as follo b) + 0.68919 b) + 0.62517 ft) + 1.27016 dar Bay ft) + 1.37411 been calcula d administra costs and ph US\$9,370/t 6\$2,400/oz S\$30/oz urgical recov	Golden E ws: * grade * grade * grade (ted base tion cost hysicals f	Au (g/t) + 0 Au (g/t) + 0 Cu (%),for a ed on the ke s. Benchmatorm the ba	ey input components of mining, ark industry averages and asis of the cut-off grade				
			Cedar Bay	Golden Eye	Corner Bay	Devl in	Joe Mann					
		Au	87%	87%	78%	73%	84%					
		Cu	91%	91%	93%	96%	95%					
		Ag	80%	80%	80%	80%	80%					
Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining The anticipated mining method for sub vertical deposits; Corner Bay, Cedar Bay, Eye and Joe Man is longitudinal long hole with pillar (LHP). This mining method is used to identify sensible SMU units when determining block sizes in the model. The anticipated mining method for Devlin is either 1) drift and fill with slash; and and pillar with partial pillar recovery.								P). This mining method has been ock sizes in the model.				

Criteria	JORC Code explanation	Commentary	ry										
	methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with	deposit l within th	breakever	n cut-off g was repo	grade for	Mineral Res	ource repor	ting. Increm	at the respective nental material and applied at the				
	an explanation of the basis of the mining assumptions made.	 Resources are calculated as in-situ resources. Conservative factors used to calculate th underground reporting cut-off are based on previous operating cost basis for the mill, recoveries and general and administration (G&A) costs: 											
		o Excl	change Ra	ate US\$1.0	0 = C\$1	.35							
			tal Price C										
			tal Price G										
		 Metal Price Silver: US\$30/oz 											
		 For Corner Bay, 65% of mined material was assumed to be p grade during the sorting process. For Devlin, 60% of mined m processed with no loss in grade during the sorting process. 											
		• 100% of	100% of G&A at Devlin was transferred to Corner Bay.										
		Operating Co	costs:										
				Cost	its	Cedar E	Bay G	olden Eye	Corner B	ay Dev	lin Joe Mar		
		Mining Commilled	ed) `	\$125	5	\$125	\$110	\$15	55 \$122				
		Processin (C\$/t mi	nilled)	\$27		\$27	\$31	\$23	3 \$27				
		Transpor mille		\$2		\$1	\$12	\$18	8 \$19				
		G&A (C\$/t		\$6		\$6	\$8	\$0	\$6				
		σω, ι (σφ, ι	t milled)	\$6		\$6	ΨΟ	Ψ.	ΨΟ				
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the	Metallurg and som	rgical assume more retaine	umptions vecent test marised in	work. An the tab	deposit and e ssumed meta le below.	lement bas	ed upon his	torical information				
factors or	metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting	Metallurg and som element	rgical assume more retained the more retained to the summer of the sumption of the summer of the sum	umptions vecent test marised in	work. An the tab	deposit and e ssumed meta le below. ut Off Grade	lement bas	ed upon his	torical information				
actors or	metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous.	Metallurg and som element	rgical assume more retained the more retained to the summer of the sumption of the summer of the sum	umptions vecent test marised in tions Appl.	work. An the tab lied to C	deposit and e ssumed meta le below. ut Off Grade	lement bas allurgical re	ed upon his coveries by	torical information				
factors or	metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting	Metallurg and som element	rgical assume more retained tare summer tare summer tare summer tare summer tare summer tare tare tare tare tare tare tare ta	umptions vecent test marised in tions Applications Cedar Bay	work. An the tab lied to C Golde Eye	deposit and e ssumed metale below. ut Off Grade Corner Bay	lement bas allurgical red	ed upon his coveries by Joe Mann	torical information				

Criteria	JORC Code explanation	Coi	mmentary									
		•	These assumptions ha	ave bee	en applie	ed to the	cut-off	grades	and are	suppor	ted by:	
		•	Base Metallurgical La complete Corner Bay support of ongoing stu	metallu	rgical de	amloops evelopm	, British ent and	Columb I locked	oia was cycle fl	commis otation t	sioned testing in	to 1
		•	A total of 34 diamond that intersected coppe Estimate									
		•	The drill core was san split core were further crushed product. The included an 18% exte mineralized interval.	manua	Ily broke site sam	en down ple weig	into 1 t ghted 20	to 3 inch 02 kg ar	es leng nd grade	th to sined 2.20%	nulate a % Cu an	1
		•	 The composite sample was then processed through the Steinert ore sorter and mixed wi 26% of the unsorted underflow by-passed mineralized material to represent an overall sorted pre-concentrate mineralized material product. The composite resulted in a 123 kilogram sample with a grade of 3.31% Cu. 							rall		
		•	The resulting compos flotation metallurgical 140 microns K80 in th approximately 37 micro	perform e rough	nance. T ner testir	he sam ng and t	ple was hen pro	prepare	ed to a i	nominal	grind siz	ze of
		•	The sample responde conventional flotation completed with varyin recovery. The tests re recoveries 98.2% and	process g retent sulted i	sing met tion time n conce	hods ar to det ntrate g	nd reage ermine	ents. Tw the cond	o locke centrate	d cycle	tests we versus	ere
			Test	Lock	cycle tes	st feed	C	oncentra	ate		Recover	у
				Cu %	Au g/t	Ag g/t	Cu %	Au g/t	Ag g/t	Cu %	Au %	Ag %
			Lock Cycle Test 1	3.31	0.30	9	27	1.82	68	98.2	72.1	86.4
			Lock Cycle Test 2	3.28	0.55	10	29.6	3.24	72	96.8	62.6	76.9
		•	 Minimal amounts of deleterious elements (e.g. arsenic, antimony, bismuth, cadmium etc.) were present in the concentrate, indicative of the "clean" nature of the concentrate. These results showed the highly commercial quality of the concentrate in terms of saleability and payment terms of smelters 							These		

Criteria	JORC Code explanation	Cor	nmentary			
		•	Other metallurgical are the following:	recovery figur	res from the C	ompany's Chibougamau Project deposits
			Chibougamau Project Deposit	Recovery Cu %	Recovery Au %	Metallurgical Testing / Processing
			Devlin	95.5	72.5	1. 2021 flotation/locked cycle tests at SGS Canada Inc. mineral processing facility in Quebec City, Quebec. Composite sample from 3 HQ drill cores. 2. 2022 ore sorting test program at Corem mineral processing facility in Quebec City, Quebec. Composite sample from 4 HQ drill cores.
			Cedar Bay	91	87	Production data prior to 1987.
			Joe Mann	94.6	83.6	Production data from 2005-2007, prior to closure of mine.
		•	Historical recoverie			ocessing Facility are assumed at 95% for l (gold and silver).
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	•	maintenance. Ther Chibougamau Proj Waste rock materia based facilities. Wh	e are no know ect at this time al is expected t nile at this stag	n significant e e. to be stored u ge the final wa	m 1955 to 2008 and is currently on care and invironmental factors affecting the inderground or at near surface purposeste storage plan is not confirmed, there is age at the Chibougamau Project.
Bulk density	Whether assumed or determined. If assumed, the	Cor	ner Bay			
	basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of	•				ollected at Corner Bay and analysed using d from 2.85 g/cm³ to 3.02 g/cm³ within

Criteria	JORC Code explanation	Commentary							
	the measurements, the nature, size and representativeness of the samples.	mineralisation doma Densities for overbu				f mineralisation.			
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and	 Density values were vein, or by the data vein are presented 	set average whe	re no samples wer	e taken. Assigne	ed density values by			
	differences between rock and alteration zones within the deposit.	Corner Bay Density Domains	Density (g/cm³)	Domains	Density (g/cm³)				
	Discuss assumptions for bulk density estimates used in the evaluation process of the different	Overburden	2.00	WV	2.86				
	materials.	CBAD1	3.02	WV2	2.85				
		CBAD2	3.02	WV3	2.93				
		CBAD3	3.00	CBAD4	2.95				
		CBUD	2.97	CBAD3a	2.90				
		Adjacent Material							
		Cedar Bay				_			
		 A total of 23 density the measured value was determined for the block model. 	es ranging from 2	2.17 t/m³ to 3.40 t/n	n³. An average va				
		Joe Mann							
		 A total of 603 densi ranged from 2.78 g. to 3.24 g/cm³ in adj domains. 	/cm ³ to 3.07 g/cn	n ³ within mineralisa	ation domains and	d from 1.28 g/cm ³			
		Devlin							
		 A total of 52 density Analysis of host lith g/cm³ for the Upper 	ologies resulted	in densities set at a	2.90 g/cm ³ for the	Lower Zone, 2.85			
		Golden Eye							
		Similar to Cedar Ba blocks. This is cons							

dataset provided for this deposit.

Criteria	JORC Code explanation	Commentary
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	 At Corner Bay, Indicated Mineral Resources represent areas defined with at least three drill holes spaced up to approximately 60 m (100% variogram range) apart and Inferred Mineral Resources represent areas defined with at least three drill holes spaced from approximately 60 m to 120 m apart. Class boundaries were adjusted locally where the dri spacing criteria were not met to consider geological understanding, grade continuity, zone thickness, and the creation of cohesive class boundaries. At Cedar Bay, Indicated Mineral Resources represent areas defined with drill holes space up to approximately 60 m apart (100% of the variogram range) and Inferred Mineral Resources represent areas defined with drill holes spaced from approximately 60 m to 12 m apart, modified to consider geological understanding, grade continuity, and the creation
		 of cohesive class boundaries. The CP notes that some lower-grade material was included to preserve continuity. At Golden Eye, Indicated Mineral Resources represent areas defined with drill holes spaced up to approximately 50 m apart (100% of the variogram range) and Inferred Mineral Resources represent areas defined with drill holes spaced from approximately 50 m to 100 m apart, modified to consider geological understanding, grade continuity, and the creation of cohesive class boundaries. The CP notes that some lower-grade material was included to preserve continuity
		At Devlin, Measured Mineral Resources represent areas defined within 15 m of underground openings, Indicated Mineral Resources represent areas defined with drill holes spaced up to approximately 60 m apart (100% of the variogram range), and Inferre Mineral Resources represent areas defined with drill holes spaced from approximately 60 m to 100 m apart, modified to consider geological understanding, copper grade continuity and the creation of cohesive class boundaries. The CP notes that some lower-grade material was included to preserve continuity.
		 At Joe Mann, only Inferred Mineral Resources have been defined, due to wider drill hole spacing (approximately 20 m and 100 m) and in consideration of observed grade continu and variability based on historical mining. During the design of the Main01 wireframe, lower-grade material was included to preserve continuity.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The mineralisation domaining, estimation parameters, classification, and reporting have been reviewed internally by Cygnus employees, with no deficiencies noted.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence	 There is good confidence in the data quality, drilling methods, and analytical results. The available geology and assay data correlate well, and the geological continuity has been demonstrated.
		 The classification into the Measured, Indicated and Inferred categories reflects the relative confidence in the geological model and grade continuity. Measured and Indicated Resources are supported by closely spaced drilling and consistent geological

Criteria	JORC Code explanation	Commentary
appropi	limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors	interpretation, while Inferred Resources are based on wider drill spacing and lower confidence in continuity
	that could affect the relative accuracy and confidence of the estimate.	The Mineral Resources constitute a global resource estimate.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	 Historical drill hole data, some predating formal QA/QC protocols, were verified against original records and imperial-to-metric conversions were confirmed. These checks support the accuracy and provide confidence that the historical data is reliable for the current Mineral Resource estimates.
		 Additional grade control drilling would be required to improve local estimates prior to mining; however, the models have been classified to reflect appropriate confidence for proposed mining studies.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	