

EXPLORATION UPDATE FOR MEYAS SAND GOLD PROJECT - SUDAN

Perth, Western Australia/ May 27, 2024/Perseus Mining Limited (ASX/TSX: PRU) is pleased to provide an update on exploration activities and studies completed to date at its Meyas Sands Gold Project (MSGP) in Sudan.

Since acquiring the MSGP in May 2022, Perseus has focussed on the development of the Galat Sufur South (GSS) deposit, and when possible, has conducted infill resource definition drilling, sterilisation trenching and drilling, a passive seismic survey, hydrogeological, metallurgical, and geotechnical work in preparation for the inclusion of data in a Front-End Engineering and Design (FEED) Study and a Final Investment Decision (FID) for the project.

With the outbreak of hostilities in Sudan in April 2023, exploration activities on the MSGP site were temporarily suspended but recently, Perseus's personnel have re-established facilities to support on-site exploration activities and in-house security teams at the MSGP camp.

With this restoration work well advanced, Perseus is pleased to announce that drilling at the MSGP recommenced on 20 May 2024. This initial drill program is aimed at testing high priority exploration targets in the vicinity of the GSS deposit to follow up the drilling results that have been received to date. These results have confirmed the grade and tenor of the GSS deposit, and while incomplete, are considered very encouraging. More significant results include:

GSRD00883B:	4.1m @ 5.48 g/t Au from 181.9m including 2.1m @ 9.42 g/t Au from 181.9m
	77m @ 3.47 g/t Au from 191m including 3.6m @ 3.06 g/t Au from 196.4m, 9.9m @ 14.56 g/t Au from 214.1m and 7m @ 4.67 g/t Au from 260m
GSRD00882A:	37m @ 4.56 g/t from 32m including 7m @ 6.91 g/t Au from 32m, 1m @ 3.96 g/t Au from 51m and 5m @ 15.82 g/t Au from 64m
	13.4m @ 2.88 g/t from 73m including 5m @ 6.3 g/t Au from 76m
	13.55m @ 1.72 g/t Au from 125.15m including 0.8m @ 10.05 g/t Au from 135.6m
	20.7m @ 1.17 g/t Au from 150.3m including 1m @ 6.11 g/t Au from 166m
	43.8m @ 1.54 g/t from 201m including 1.25m @ 3.43 g/t Au from 203.75m and 1m @ 3.74 g/t Au from 207m
 GSRC00974:	20m @ 3.12 g/t Au from 32m including 4m @ 11.25 g/t Au from 43m
GSRD00902A:	81m @ 2.02 g/t from 0m including 6m @ 6.54 g/t Au from 16m, 1m @ 3.68 g/t Au from 34m, 1m @ 5.73 g/t Au from 55m, 1m @ 3.57 g/t Au from 59m and 1m @ 7.77 g/t Au from 74m
 GSDD00870:	2.6m @ 7.16 g/t Au from 180.65m including 1.8m @ 10.03 g/t Au from 181.45m
	6.85m @ 14.38 g/t from 195.25m including 5.85m @ 16.66 g/t Au from 196.25m
	28.65m @ 4.83 g/t from 205.15m including 3.55m @ 6.78 g/t Au from 205.15m and 16.55m @ 6.28 g/t Au from 216.25m
	20.8m @ 2.28 g/t from 256.9m including 0.95m @ 4.71 g/t Au from 259.05m, 1.8m @ 4.89 g/t Au from 267.9m and 3.5m @ 4.93 g/t Au from 274.2m

PERSEUS MINING LIMITED

Level 2, 437 Roberts Road, Subiaco WA 6008 ABN: 27 106 808 986

 GSRD00885:	18m @ 7.88 g/t Au from 16m including 16m @ 8.7 g/t Au from 19m
	4m @ 6.24 g/t Au from 52m including 2m @ 11.08 g/t Au from 52m
 	6m @ 4.52g/t Au from 62m including 4m @ 6.47 g/t Au from 62m
 GSRD00884A:	16.05m @ 1.96 g/t Au from 95m including 3.7m @ 5.13 g/t Au from 98m and 1.9m @ 3.87 g/t Au from 108.3m
	17.65m @ 1.61 g/t Au from 128.35m including 1m @ 3.7 g/t Au from 135m, 1m @ 3.69 g/t Au from 141.3 and 0.5m @ 3.06 g/t Au from 144.5m
	12m @ 2.67 g/t Au from 279m including 3.6m @ 3.99 g/t Au from 279m, 1m @ 4.84 g/t Au, 1m @ 4.18 g/t Au from 287m and 1m @ 3.33 g/t Au from 290m
	18.05m @ 1.48 g/t Au from 294.95m including 2m @ 3.67 g/t Au from 296m and 13m @ 5.4 g/t Au from 317m
	43m @ 2.62 g/t from 317m including 13m @ 5.36 g/t Au from 317m, 1m @ 4.24 g/t Au from 333m and 2m @ 4.4 g/t Au from 351m
	35.4m @ 1.02 g/t Au from 363.2m including 1m @ 4.02 g/t Au from 395m
 GSRD00880:	33m @ 3.34 g/t from 44m including 21m @ 4.45 g/t Au from 46m
 GSRC00938:	6m @ 2.76 g/t Au from 6m including 4m @ 3.69 g/t from 6m
	38m @ 2.27 g/t from 43m including 12m @ 3.95 g/t Au from 51m and 2m @ 4.12 g/t Au from 68m
 GSRC00933A:	6m @ 10.12 g/t from 42m including 4m @ 14.79 g/t Au from 42m
GSRC00931:	24m @ 1.79 g/t from 4m including 2m @ 4.11 g/t Au from 9m, 2m @ 3.69 g/t Au from 25m and 2m @ 4.58 g/t Au from 64m
 GSRD00900:	25m @ 1.27 g/t Au from 40m including 2m @ 3.6 g/t Au from 61m
 GSRD00901:	20m @ 1.49 g/t Au from 0m including 1m @ 3.23 g/t Au from 3m
 GSRC00881B:	17m @ 1.72 g/t Au from 37m
 GSRC00932A:	17m @ 1.57 g/t Au from 0m including 1m @ 3.47 g/t Au from 4m and 1m @ 3.05 g/t Au from 12m

2m @ 10.2 g/t Au from 83m

Perseus's Chairman and CEO Jeff Quartermaine said:

"When Perseus acquired the Meyas Sand Gold Project in 2022 through the acquisition of Orca Gold Inc, we were very excited by the prospects of developing a large scale, low cost, long life gold mine in northern Sudan that would add a further high quality mine to Perseus's multi-mine, multi-jurisdiction asset portfolio.

The outbreak of hostilities in the south and west of Sudan in 2023 represented a serious setback for Perseus's ambitions for MSGP, but the recent recommencement of drilling activities is considered a positive step forward that hopefully will lead to the development of MSGP when peace is finally restored throughout the country.

The confirmatory drilling results that have been achieved by our team to date at MSGP are very encouraging and we are now looking forward to returning further strong results that will lead to the conversion of the published Foreign Reserve Estimate for MSGP into an updated Ore Reserve reported in accordance with JORC 2012 on which a FEED study can be confidently based."

Plate 1: Reverse circulation drilling Kwandagawi Prospect located some 4km north west of GSS Main deposit.

BACKGROUND

The MSGP is situated in the far north of Sudan, approximately 75km south of the border with Egypt, and is fully permitted by the Sudanese Government with a Mining Lease, Royalty agreement and a water permit formally granted incorporating attractive fiscal terms, and clearly delineated rights and obligations of key stakeholders.

Since the acquisition of MSGP, Perseus made strong progress towards preparing for a possible FID on the MSGP in the second half of 2023. However, in late April 2023, following the outbreak of armed conflict in Sudan, largely in and around Khartoum, between the Sudanese Armed Forces and an influential militia group, the Rapid Support Force, Perseus withdrew most of its employees from the MSGP site pending a resolution of the conflict with the safety of its staff being the number one priority for the Company.

Although hostilities between the combatants continue in certain parts of Sudan, the area in which MSGP is located has not been the scene of conflict, and there have been no reported incidents involving the combatants in an area of approximately 250,000 square kilometres around the site.

Notwithstanding the above, Perseus considers that proceeding with the execution of a complex mine development project in the context of ongoing insecurity and the reported destruction of the country's industrial base in Khartoum, would be unwise. As a result, the pending FID on the development of Meyas Sand has been deferred until confidence in the future of Sudan as a viable investment destination is restored. At this stage, there is no clear line of sight to when this might occur.

The MSGP site has subsequently been secured by a security force led by Perseus's in-house security personnel, and include representatives of the Sudanese Mining Police, a body that operates under the control of the Ministry for Minerals, as well as representatives of our host communities.

The refurbishment and construction of the camp continues to make good progress, supply lines and logistics have largely been reestablished and exploration activities within the mining lease area resumed on 20 May 2024. Drilling will focus on continuing the drill out the GSS deposit.

To date, Perseus has conducted a range of activities associated with MSGP which have included but not been limited to:

- Low level exploration activities including mapping and sampling as well as interpretation of available data with a view to better understanding the GSS deposit.
- Engineering and preparation of FEED studies performed by Perseus and its engineering contractor, Lycopodium, to optimise previous engineering planning and design work.
- Infill and sterilisation drilling program designed to infill prior drilling of the GSS deposit to confirm the estimated Mineral Resource and Ore Reserve, as well as confirm proposed infrastructure locations through sterilisation of the sites.

- Australasian Groundwater and Environmental Consultants continued hydrology modelling, after completing a programme of pressure testing, (specifically recharge rates) of the aquifer located in Area 5 that will become the primary water source for what will become the Meyas Sand Gold Mine. Progress to date gives Perseus confidence that the aquifer will support water requirements for the projected life of the mine.
- A passive seismic survey was conducted to identify localised sources of construction water.
- Construction of site access roads progressed, with completion of 10km of the 100km pipeline corridor road.
- Knight Piesold completed an initial design review on the proposed Tailings Storage Facility (TSF). Detailed engineering was suspended in April 2023.
- Design review on the 100km raw water pipeline by Fortin Pipelines was completed. Detailed engineering was suspended in April 2023.
- A tender process for supply of a Hybrid-Renewable power station commenced but was suspended in April 2023.
- Significant progress was made to prepare the site facilities to support the initial construction phase.
- Construction tooling and assets were procured to support an initial construction site capability.
- Additional metallurgical test work and a review of existing data was conducted.

GSS INFILL DRILLING

To date, Perseus has focused exploration activities on the MSGP at the GSS prospect and specifically at GSS Main and GSS East deposits. Results received to date, while incomplete, are viewed as encouraging and give a degree of confidence in the current foreign estimate. Detailed geological and resource modelling work has been undertaken and we have advanced our understanding of geology and mineralisation including geometry, grade distribution and variability, metallurgy, geotechnical aspects.

Infill drilling commenced in January 2023 but was suspended due to security and safety considerations in April 2023. At that time a total of 11,912 metres of combined RC and diamond drilling, including 4,575 metres at GSS Main and 7,337 metres at GSS East, in 34 completed holes and 46 pre-collars had been completed.

While assay results are incomplete, those results to hand are considered encouraging. More significant results include:

- GSRD00883B (pre-collared diamond tail) 4.1m @ 5.48 g/t Au from 181.9m (including 2.1m @ 9.42 g/t Au from 181.9m) and 77m @ 3.47 g/t Au from 191m (including 3.6m @ 3.06 g/t Au from 196.4m, 9.9m @ 14.56 g/t Au from 214.1m and 7m @ 4.67 g/t Au from 260m)
- GSRD00882A (pre-collared diamond tail) 37m @ 4.56 g/t Au from 32m (including 7m @ 6.91 g/t Au from 32m and 5m @ 15.82 g/t Au from 64m), 13.4m @ 2.88 g/t Au from 73m (including 5m @ 6.3 g/t Au from 76m) and 43.8m @ 1.54 g/t Au from 201m
- GSRC00974 (pre-collar) 20m @ 3.12 g/t Au from 32m (including 4m @ 11.25 g/t Au from 43m)
- GSRD00902A (RC pre-collar) 81m @ 2.02 g/t Au from 0m (including 6m @ 6.54g/t Au from 16m)
- GSDD00870 (diamond hole) 6.85m @ 14.38 g/t Au from 195.25m (including 5.85m @ 16.66 g/t Au from 196.25m), 28.65m @ 4.83g/t Au from 205.15m (including 3.55m @ 6.78 g/t Au from 205.15m and 16.55m @ 6.28 g/t Au from 216.25m) and 20.8m @ 2.28 g/t Au from 256.9m (including 3.55m @ 4.93 g/t Au from 274.2m)
- GSRD00885 (RC pre-collar) 18m @ 7.88 g/t Au from 16m (including 16m @ 8.7 g/t Au from 19m)
- GSRD00884A (pre-collared diamond tail) 16.05m @ 1.96 g/t Au from 95m (including 3.7m @ 5.13 g/t Au from 98m and 1.9m @ 3.87 g/t Au from 108.3m), 12m @ 2.67 g/t Au from 279m (including 3.6m @ 3.99 g/t Au from 279m), 43m @ 2.62 g/t Au from 317.00m (including 13 m @ 5.36 g/t Au from 317m) and 35.4m @ 1.02 g/t Au from 363.2m
- GSRD00880 (RC pre-collar) 33m @ 3.34 g/t Au from 44m (including 21m @ 4.45 g/t Au from 46m)
- GSRC00938 (RC pre-collar) 38m @ 2.27 g/t Au from 43m (including 12m @ 3.95 g/t Au from 51m)

- GSRC00933A (RC pre-collar) 6m @ 10.12 g/t Au from 42m (including 4m @ 14.79 g/t Au from 42m)
- GSRC00931 (RC pre-collar) 24m @ 1.79 g/t Au from 4m (including 2m @ 4.11 g/t Au from 9m,2m @ 3.69 g/t Au from 25m and 2m @ 4.58 g/t Au from 64m)
- GSRD00900 (RC pre-collar) 25m @ 1.27 g/t Au from 40m (including 2m @ 3.6 g/t Au from 61m)
- GSRD00901: 20m @ 1.49 g/t Au from 0m including 1m @ 3.23 g/t Au from 3m
- GSRC00881B: 17m @ 1.72 g/t Au from 37m
- GSRC00932A: 17m @ 1.57 g/t Au from 0m (including 1m @ 3.47 g/t Au from 4m and 1m @ 3.05 g/t Au from 12m) and 2m @ 12.24 g/t Au from 83m

Locations of holes in Figures in Appendix 1 and a full list of intercepts are included in tables in Appendix 2.

GSS STERILISATION DRILLING

Mapping, sampling and sterilisation drilling commenced in December 2022 but as noted, was suspended due to security and safety considerations in April 2023. The drilling completed to date comprises 8,536 metres of RC drilling in 85 RC holes. The results received so far confirmed the lack of mineralisation on the areas tested by sterilisation drilling. See Figure 6 in Appendix 1.

It is important to note that following the outbreak of hostilities in April 2023, the MSGP site was visited by vandals following the temporary withdrawal of Perseus's staff. These vandals damaged, destroyed or contaminated a number of samples from drilled holes and these samples cannot be recovered.

NEXT STEPS AT GSS

It is intended that as soon as practical, Perseus will convert the published Foreign Reserve Estimate for the Meyas Sand Project, into an Ore Reserve prepared in accordance with the requirements of JORC 2012. Exploration drilling will be also conducted on the broader Block B exploration license.

This announcement has been approved for release by Perseus's Chairman and Chief Executive Officer, Jeff Quartermaine.

Competent Person Statement:

The information in this report and the attachments that relate to exploration drilling results at the Meyas Sand Gold Project is based on, and fairly represents, information and supporting documentation prepared by Mr Glen Edwards, a Competent Person who is a Chartered Professional Geologist. Mr Edwards is the General Manager of Exploration of the Company. Mr Edwards has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves''') and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Mr Edwards consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Caution Regarding Forward Looking Information:

This report contains forward-looking information which is based on the assumptions, estimates, analysis and opinions of management made in light of its experience and its perception of trends, current conditions and expected developments, as well as other factors that management of the Company believes to be relevant and reasonable in the circumstances at the date that such statements are made, but which may prove to be incorrect. Assumptions have been made by the Company regarding, among other things: the price of gold, continuing commercial production at the Yaouré Gold Mine, the Edikan Gold Mine and the Sissingué Gold Mine without any major disruption due to the COVID-19 pandemic or otherwise, the receipt of required governmental approvals, the accuracy of capital and operating cost estimates, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain financing as and when required and on reasonable terms. Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used by the Company. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of current exploration, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. The Company believes that the assumptions and expectations reflected in the forward-looking information are reasonable. Assumptions have been made regarding, among other things, the Company's ability to carry on its exploration and development activities, the timely receipt of required approvals, the price of gold, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain financing as and when required and on reasonable terms. Readers should not place undue reliance on forward-looking information. Perseus does not undertake to update any forwardlooking information, except in accordance with applicable securities laws.

ASX/TSX CODE: PRU

REGISTERED OFFICE:

Level 2 437 Roberts Road Subiaco WA 6008

Telephone: +61 8 6144 1700

www.perseusmining.com

CONTACTS:

Jeff Quartermaine

Managing Director & CEO jeff.quartermaine@perseusmining.com

Stephen Forman Investor Relations +61 484 036 681 stephen.forman@perseusmining.com

Nathan Ryan Media Relations +61 420 582 887 nathan.ryan@nwrcommunications.com.au

APPENDIX 1 – FIGURES

Figure 1: MSGP – Licences on simplified geology draped on SPOT Image showing location of GSS and some of the regional prospects.

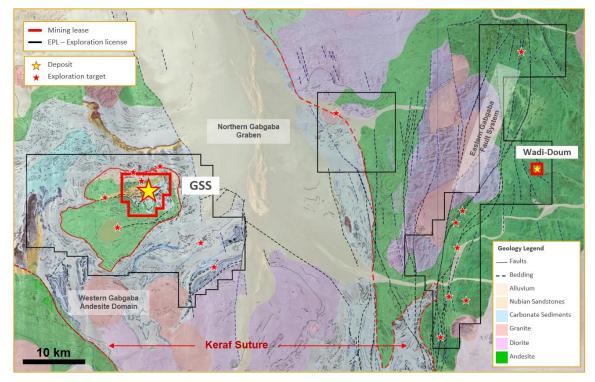
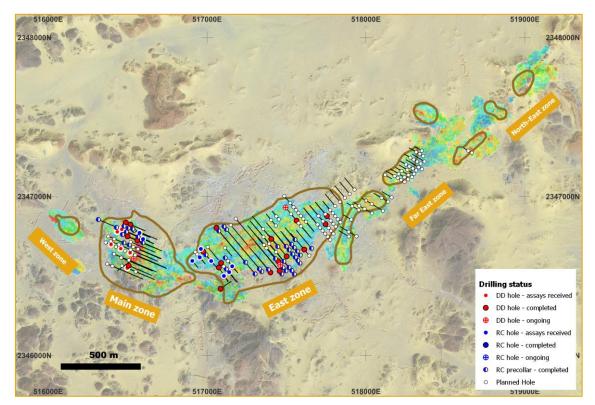
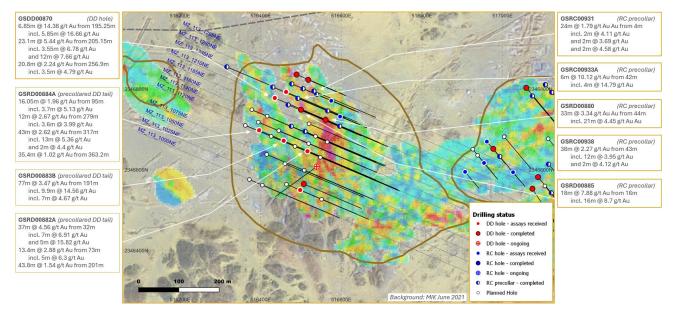




Figure 2: MSGP – GSS – showing deposits and optimised pits (Orca) with image of block model at surface and location of drill collars and traces by campaign.

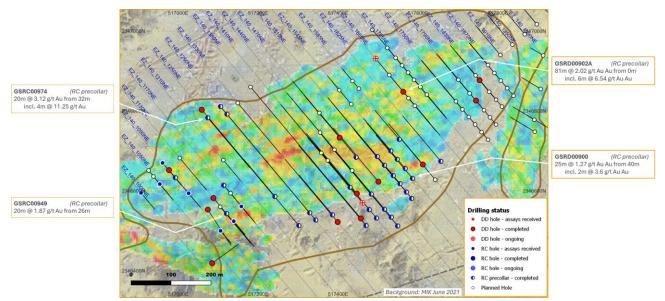
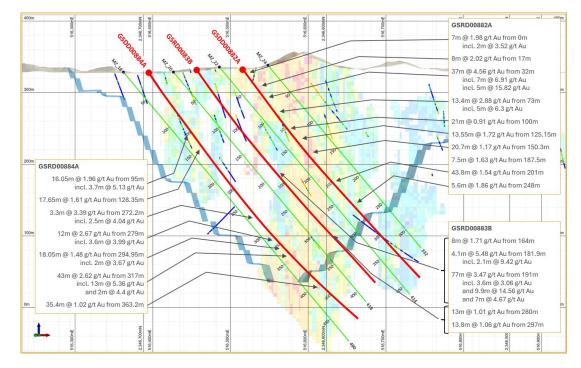
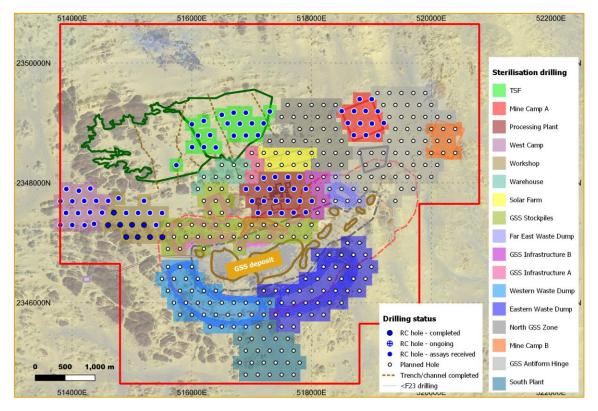


Figure 3: MSGP – GSS Main Infill drilling Mineralised intervals > 30 m.g/t Au (Low-grade intervals: min. grade: 0.5 g/t Au – min. width: 2m – max. internal dilution: 2m. High-grade intervals: min. grade: 3 g/t Au – no min. width – max. internal dilution: 2m)

Figure 4: MSGP – GSS East Infill drilling Mineralised intervals > 30 m.g/t Au (Low-grade intervals: min. grade: 0.5 g/t Au – min. width: 2m – max. internal dilution: 2m. High-grade intervals: min. grade: 3 g/t Au – no min. width – max. internal dilution: 2m)

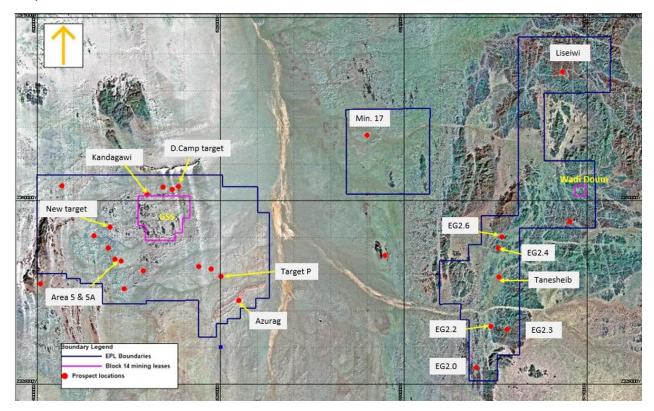

Figure 5: MSGP– GSS Main – Drilling cross section mz_113_1120NE showing imaged block model and optimised pit shell (Orca) showing historical and new Perseus drilling annotated with better intercepts.

Figure 6: MSGP – Infrastructure sterilisation program showing progress to date.

Figure 7: MSGP Mining Licence and GSS Concession – showing location of more significant prospects including Kandagawi Prospect.

APPENDIX 2 – SIGNIFICANT INTERCEPTS TABLES

Table 2.1: MSGP Drilling - drill holes and significant assays

(Based on lower cut-off of 0.5 g/t Au with maximum 2m internal waste <0.5 g/t; high-grade intervals based on lower cut-off of 3 g/t Au with maximum 2m internal waste <3 g/t

Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From (m)	Width (m)	Au (g/t)
GSS Main	infill drilli	ng								
GSDD00863	516,463	2,346,793	326	111	-55	315.6	DD hole	79.7	0.3	19.5
GSDD00863							DD hole	134.0	2.0	0.99
GSDD00863							DD hole	160.0	3.0	3.41
GSDD00863	including						DD hole	160.0	2.0	4.31
GSDD00863							DD hole	220.0	3.0	2.47
GSDD00863	including						DD hole	220.0	1.0	4.14
GSDD00863							DD hole	227.0	7.9	2.37
GSDD00863	including						DD hole	227.0	1.0	4.61
GSDD00863	including						DD hole	233.0	1.0	3.09
GSDD00870	516,435	2,346,778	327	113	-52	351.2	DD hole	180.7	2.6	7.16
GSDD00870	including						DD hole	181.5	1.8	10.03
GSDD00870							DD hole	195.3	6.9	14.38
GSDD00870	including						DD hole	196.3	5.9	16.66
GSDD00870							DD hole	205.2	28.7	4.83
GSDD00870	including						DD hole	205.2	3.6	6.78
GSDD00870	and						DD hole	216.3	16.6	6.28
GSDD00870							DD hole	242.8	5.1	1.54
GSDD00870	including						DD hole	244.9	1.0	3
GSDD00870							DD hole	256.9	20.8	2.24
GSDD00870	including						DD hole	259.1	1.0	4.71
GSDD00870	and						DD hole	267.9	1.8	4.89
GSDD00870	and						DD hole	274.2	3.5	4.79
GSDD00870							DD hole	330.3	6.7	0.6
GSRD00880	516,561	2,346,724	333	112	-53	243.5	RC precollar	36.0	2.0	3.04
GSRD00880	including						RC precollar	37.0	1.0	3.15
GSRD00880							RC precollar	44.0	33.0	3.34
GSRD00880	including						RC precollar	46.0	21.0	4.45
GSRD00880	and						RC precollar	70.0	1.0	3.78
GSRD00880							DD tail	samp	les not availa	ble
GSRC00881B	516,510	2,346,695	329	112	-54	279.4	RC precollar	5.0	5.0	1.92
GSRC00881B	including	. ,					RC precollar	7.0	1.0	3.08
GSRC00881B	5						RC precollar	37.0	17.0	1.72
GSRC00881B							RC precollar	57.0	4.0	1.06
GSRD00882A	516,516	2,346,646	332	114	-54	381.6	RC precollar	0.0	7.0	1.98
GSRD00882A	including	, ,,	-				RC precollar	0.0	2.0	3.52
GSRD00882A	0						RC precollar	17.0	8.0	2.02
GSRD00882A	including						RC precollar	19.0	1.0	8.15
GSRD00882A							RC precollar	32.0	37.0	4.56

Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From (m)	Width (m)	Au (g/t)
GSRD00882A	Including						RC precollar	32.0	7.0	6.91
GSRD00882A	and						RC precollar	51.0	1.0	3.96
GSRD00882A	and						RC precollar	64.0	5.0	15.82
GSRD00882A							RC precollar	73.0	13.4	2.88
GSRD00882A	including						RC precollar	76.0	5.0	6.3
GSRD00882A							DD tail	92.9	4.2	0.96
GSRD00882A							DD tail	100.0	21.0	0.91
GSRD00882A							DD tail	125.2	13.6	1.72
GSRD00882A	including						DD tail	125.2	1.0	3.26
GSRD00882A	and						DD tail	135.6	0.8	10.05
GSRD00882A							DD tail	150.3	20.7	1.17
GSRD00882A	including						DD tail	166.0	1.0	6.11
GSRD00882A							DD tail	187.5	7.5	1.63
GSRD00882A							DD tail	201.0	43.8	1.54
GSRD00882A	including						DD tail	203.8	1.3	3.43
GSRD00882A	and						DD tail	207.0	1.0	3.74
GSRD00882A	and						DD tail	228.9	1.0	3.32
GSRD00882A							DD tail	248.0	5.6	1.86
GSRD00882A	including						DD tail	253.0	0.6	6.29
GSRD00882A							DD tail	263.7	8.1	1.03
GSRD00882A							DD tail	309.3	5.0	0.89
GSRD00882A							DD tail	319.3	3.7	1.58
GSRD00882A							DD tail	327.8	6.0	0.94
GSRD00883B	516,457	2,346,672	332	107	-56	387.5	RC precollar	0.0	2.0	1.06
GSRD00883B							RC precollar	8.0	2.0	0.58
GSRD00883B							RC precollar	14.0	8.0	0.57
GSRD00883B							DD tail	0.0	2.0	1.06
GSRD00883B							DD tail	8.0	2.0	0.58
GSRD00883B							DD tail	14.0	8.0	0.57
GSRD00883B							DD tail	164.0	8.0	1.71
GSRD00883B							DD tail	181.9	4.1	5.48
GSRD00883B	including						DD tail	181.9	2.1	9.42
GSRD00883B							DD tail	191.0	77.0	3.47
GSRD00883B	including						DD tail	196.4	3.6	3.06
GSRD00883B	including						DD tail	214.1	9.9	14.56
GSRD00883B	including						DD tail	260.0	7.0	4.67
GSRD00883B							DD tail	280.0	13.0	1.01
GSRD00883B							DD tail	297.0	13.8	1.06
GSRD00883B							DD tail	313.0	5.0	1.28
GSRD00883B							DD tail	330.6	2.0	0.75
GSRD00883B							DD tail	375.0	4.0	1.64
GSRD00884A	516,396	2,346,698	327	110	-56	450.4	RC precollar	64.0	4.0	1
GSRD00884A							DD tail	95.0	16.1	1.96
GSRD00884A	including						DD tail	98.0	3.7	5.13
GSRD00884A	and						DD tail	108.3	1.9	3.87

Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From (m)	Width (m)	Au (g/t)
GSRD00884A							DD tail	113.6	2.4	0.87
GSRD00884A							DD tail	128.4	17.7	1.61
GSRD00884A	including						DD tail	135.0	1.0	3.7
GSRD00884A	and						DD tail	141.3	0.7	3.69
GSRD00884A	and						DD tail	144.5	0.5	3.06
GSRD00884A							DD tail	149.0	4.0	2.08
GSRD00884A	including						DD tail	150.0	1.0	3.9
GSRD00884A							DD tail	265.0	3.0	1.45
GSRD00884A							DD tail	272.2	3.3	3.39
GSRD00884A	including						DD tail	273.0	2.5	4.04
GSRD00884A							DD tail	279.0	12.0	2.67
GSRD00884A	and						DD tail	279.0	3.6	3.99
GSRD00884A	and						DD tail	287.0	1.0	4.18
GSRD00884A	and						DD tail	290.0	1.0	3.33
GSRD00884A							DD tail	295.0	18.1	1.48
GSRD00884A	including						DD tail	296.0	2.0	3.67
GSRD00884A							DD tail	317.0	43.0	2.62
GSRD00884A	including						DD tail	317.0	13.0	5.36
GSRD00884A	and						DD tail	333.0	1.0	4.24
GSRD00884A	and						DD tail	351.0	2.0	4.4
GSRD00884A							DD tail	363.2	35.4	1.02
GSRD00884A	including						DD tail	395.0	1.0	4.02
GSRD00884A							DD tail	403.0	4.0	1.54
GSRD00884A							DD tail	415.0	7.9	0.51
GSRD00885	516,500	2,346,749	325	112	-54	296.1	RC precollar	18.0	18.0	7.88
GSRD00885	including						RC precollar	19.0	16.0	8.7
GSRD00885							RC precollar	52.0	4.0	6.24
GSRD00885	including						RC precollar	52.0	2.0	11.08
GSRD00885							RC precollar	62.0	6.0	4.52
GSRD00885	including						RC precollar	62.0	4.0	6.47
GSRD00885							RC precollar	71.0	2.0	0.75
GSRD00885							DD tail		les not availa	
GSRD00906A	516,489	2,346,836	323	113	-52	201.0	RC precollar		ignificant valu	
GSRD00906A							DD tail		les not availa	
GSRD00907	516,518	2,346,823	323	113	-52	163.0	RC precollar		ignificant valu	
GSRD00907							DD tail		oles not availa	
GSRC00908	516,477	2,346,813	328	112	-60	81.0	RC precollar	3.0	2.0	2.08
GSRC00909	516,505	2,346,801	324	108	-62	81.0	RC precollar	59.0	4.0	0.94
GSRC00909							RC precollar	68.0	3.0	2.22
GSRC00909	including						RC precollar	69.0	1.0	4.3
GSDD00910	516,498	2,346,549	364	113	-60	310.00	DD hole	no s	ignificant val	ue
GSRC00931	516,539	2,346,787	326	111	-55	81.0	RC precollar	4.0	24.0	1.79
GSRC00931	including						RC precollar	9.0	2.0	4.11
GSRC00931	and						RC precollar	25.0	2.0	3.69

Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From (m)	Width (m)	Au (g/t)
GSRC00931							RC precollar	64.0	2.0	4.58
GSRC00932A	516,575	2,346,771	327	109	-61	112.0	RC hole	0.0	17.0	1.57
GSRC00932A	including						RC hole	4.0	1.0	3.47
GSRC00932A	and						RC hole	12.0	1.0	3.05
GSRC00932A							RC hole	83.0	2.0	10.2
GSRC00933A	516,492	2,346,777	324	112	-58	270.0	RC precollar	10.0	1.0	5.23
GSRC00933A							RC precollar	42.0	6.0	10.12
GSRC00933A	including						RC precollar	42.0	4.0	14.79
GSRC00933A							RC precollar	57.0	1.0	3.34
GSRC00934	516,430	2,346,805	325	114	-62	200.0	RC precollar	19.0	2.0	1.71
GSRC00935	516,316	2,346,855	323	113	-52	81.0	RC precollar	nos	significant valu	Je
GSRC00936	516,566	2,346,746	330	112	-56	171.5	RC precollar	9.0	2.0	2.44
GSRC00936							RC precollar	9.0	1.0	3.24
GSRC00936							RC precollar	32.0	4.0	1.77
GSRC00936	including						RC precollar	34.0	1.0	3
GSRC00937A	516,597	2,346,732	335	110	-59	115.0	RC hole	34.0	2.0	1.97
GSRC00937A	including						RC hole	54.0	2.0	0.86
GSRC00938	516,596	2,346,708	343	112	-58	210.0	RC precollar	6.0	6.0	2.76
GSRC00938	including						RC precollar	6.0	4.0	3.69
GSRC00938							RC precollar	35.0	3.0	2.36
GSRC00938	including						RC precollar	36.0	1.0	4.68
GSRC00938							RC precollar	43.0	38.0	2.27
GSRC00938	including						RC precollar	46.0	1.0	3.53
GSRC00938	and						RC precollar	51.0	12.0	3.95
GSRC00938	and						RC precollar	68.0	2.0	4.12
GSRC00938	and						RC precollar	77.0	1.0	3.54
GSRC00940	516,532	2,346,795	329	111	-59	270.0	RC precollar	26.0	2.0	0.53
GSRC00941	516,468	2,346,761	326	113	-52	81.0	RC precollar	no s	significant valu	le
GSRC00942	516,476	2,346,708	329	110	-57	310.2	RC precollar	55.0	3.0	0.72
GSDD00951	516,507	2,346,565	362	113	-60	310.0	DD hole	sam	oles not availa	ble
GSS East i	nfill drillin	g		-						
GSRD00864A	517,399	2,346,522	334	320	-60	418.0	RC precollar	nos	significant valu	Je
GSRD00864A							DD tail	samı	ples not availa	ble
GSRC00867	517,478	2,346,553	329	320	-55	81.0	RC precollar	nos	significant valu	Je
GSRD00868	517,447	2,346,593	329	320	-58	420.0	RC precollar	58.0	8.0	0.95
GSRD00868							RC precollar	75.0	4.0	0.51
GSRD00868							DD tail		oles not availa	
GSRD00869	517,501	2,346,623	327	317	-66	351.4	RC precollar	0.0	10.0	0.61
GSRD00869	,	, , , ,	- *	_ *			RC precollar	25.0	2.0	0.95
GSRD00869							RC precollar	57.0	13.0	1.24
GSRD00869							DD tail		oles not availa	
GSRD00886	516,977	2,346,652	322	139	-57	210.5	RC precollar	3.0	2.0	0.76
	,- · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					RC precollar	35.0	19.0	1.09

Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From (m)	Width (m)	Au (g/t)
GSRD00886	including						RC precollar	36.0	1.0	3.08
GSRD00886							DD tail	samp	oles not availa	ıble
GSRD00887A	517,088	2,346,582	328	137	-57	241.2	RC precollar	8.0	5.0	1.13
GSRD00887A							RC precollar	27.0	8.0	1.95
GSRD00887A	including						RC precollar	32.0	2.0	3.34
GSRD00887A							RC precollar	39.0	9.0	0.97
GSRD00887A							RC precollar	52.0	1.0	3.33
GSRD00887A							DD tail	samp	les not availa	ble
GSRD00888A	517,302	2,346,513	329	320	-60	61.0	RC precollar	10.0	4.0	1.09
GSRD00888A							RC precollar	23.0	2.0	0.59
GSRD00888A							RC precollar	59.0	2.0	2.21
GSRD00889	517,059	2,346,803	322	135	-67	369.9	RC precollar	26.0	4.0	5.13
GSRD00889	including						RC precollar	28.0	2.0	8.17
GSRD00889							RC precollar	75.0	2.0	0.83
GSRD00889							DD tail	samp	les not availa	ble
GSRD00900	517,612	2,346,666	329	319	-64	330.0	RC precollar	25.0	11.0	1.81
GSRD00900	including						RC precollar	32.0	1.0	4.79
GSRD00900							RC precollar	40.0	25.0	1.27
GSRD00900	including						RC precollar	61.0	2.0	3.6
GSRD00900							RC precollar	68.0	13.0	1.24
GSRD00900	including						RC precollar	77.0	1.0	3.14
GSRD00900	and						RC precollar	80.0	1.0	3.46
GSRD00900							DD tail	samp	les not availa	ble
GSRD00901	517,404	2,346,733	335	317	-64	277.2	RC precollar	0.0	20.0	1.49
GSRD00901	including						RC precollar	3.0	1.0	3.23
GSRD00901							RC precollar	27.0	6.0	0.71
GSRD00901							RC precollar	38.0	5.0	2.08
GSRD00901	including						RC precollar	40.0	1.0	4.07
GSRD00901							DD tail	samp	les not availa	ble
GSRD00902A	517,563	2,346,848	323	144	-61	232.1	RC precollar	0.0	81.0	2.02
GSRD00902A	including						RC precollar	16.0	6.0	6.54
GSRD00902A	and						RC precollar	34.0	1.0	3.68
GSRD00902A	and						RC precollar	55.0	1.0	5.31
GSRD00902A	and						RC precollar	59.0	1.0	3.57
GSRD00902A	and						RC precollar	74.0	1.0	7.36
GSRD00902A							DD tail	samp	les not availa	ble
GSRD00903	517,494	2,346,931	318	143	-63	279.9	RC precollar	18.0	9.0	1.23
GSRD00903							RC precollar	31.0	1.0	7.85
GSRD00903							RC precollar	35.0	9.0	2.31
GSRD00903	including						RC precollar	38.0	5.0	3.48
GSRD00903							RC precollar	49.0	2.0	0.7
GSRD00903							RC precollar	60.0	9.0	2.25
	including						RC precollar	62.0	3.0	5.09
GSRD00903	moluume							02.0		

Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From (m)	Width (m)	Au (g/t)
GSRC00904	517,745	2,346,826	326	320	-55	254.0	RC precollar	no si	ignificant valu	ie
GSRC00904							DD tail	samp	les not availal	ole
GSRD00905A	517,754	2,346,877	324	321	-60	238.6	RC precollar	10.0	11.0	1.4
GSRD00905A	including						RC precollar	20.0	1.0	5.42
GSRD00905A							RC precollar	49.0	3.0	0.94
GSRD00905A							DD tail	samp	les not availal	ble
GSRC00944	516,961	2,346,670	322	140	-55	126.0	RC hole	24	3	0.68
GSRC00944							RC hole	31	6	0.63
GSRC00944							RC hole	62	7	0.61
GSRC00944							RC hole	82	9	1.15
GSRC00945	517,026	2,346,594	326	140	-55	80.0	RC precollar	12	4	0.78
GSRC00945							RC precollar	20	2	2.88
GSRC00945	including						RC precollar	20	1	3.4
GSRC00945							RC precollar	29	3	0.55
GSRC00945							RC precollar	36	13	0.85
GSRC00945							RC precollar	59	2	0.58
GSRC00945							RC precollar	78	2	0.89
GSRC00946	517,106	2,346,500	337	140	-63	89.0	RC precollar	0	3	1.26
GSRC00946							RC precollar	73	2	0.69
GSRC00947	516,954	2,346,617	323	140	-55	91.0	RC precollar	12	2	0.81
GSRC00947							RC precollar	17	3	0.55
GSRC00947							RC precollar	27	9	1.82
GSRC00947	including						RC precollar	34	2	3.27
GSRC00948	516,907	2,346,595	326	140	-55	91.0	RC precollar	33	4	0.71
GSRC00948							RC precollar	48	2	1.07
GSRC00948							RC precollar	60	5	0.65
GSRC00948							RC precollar	69	4	1.66
GSRC00948	including						RC precollar	72	1	3.84
GSRC00949	517,158	2,346,561	335	140	-60	109.0	RC hole	16	4	0.68
GSRC00949							RC hole	26	20	1.87
GSRC00949	including						RC hole	43	1	15.05
GSRC00949							RC hole	60	7	1.33
GSRC00949							RC hole	97	2	1.27
GSRC00950	517,139	2,346,524	338	140	-55	75.0	RC precollar	8	2	0.82
GSDD00971	517,074	2,346,553	328	147	-56	192.3	DD hole	samp	les not availal	ble
GSRC00972	517,114	2,346,614	329	140	-60	66.0	RC precollar	18	5	0.96
GSRC00972	,	, -,-	-	-		-	RC precollar	47	4	0.86
GSRC00973	517,242	2,346,586	326	320	-60	41.0	RC precollar	31	4	0.52
GSRC00974	517,074	2,346,783	324	140	-60	81.0	RC precollar	31	20	3.12
GSRC00974	517,074	2,070,703	524	140	00	01.0	RC precollar	43	4	11.25
GSRC00974	517,122	2,346,792	324	140	-54	41.0	RC precollar		4 ignificant valu	
									0	
GSRC00976	517,106	2,346,811	324	140	-54	81.0	RC precollar		les not availal	
GSRC00977	517,344	2,346,527	330	320	-60	81.0	RC precollar		les not availal	
GSRC00978	517,329	2,346,545	329	320	-60	81.0	RC precollar	samp	les not availa	ble

GSRC00979 517.386 2.346.540 335 320 40 R.C. precolar samples not available GSRC0088 517.486 2.346,512 312 320 -55 81.0 R.C. precolar samples not available GSRC0088 517.470 2.346,513 333 320 -55 81.0 R.C. precolar samples not available GSRC0088 517.470 2.346,513 333 320 -55 81.0 R.C. precolar samples not available GSRC0088 517.571 2.346,513 328 320 -55 81.0 R.C. precolar samples not available GSRC0088 517.571 2.346,513 328 320 -55 81.0 R.C. precolar samples not available GSRC0088 517.555 2.346,613 328 320 -55 81.0 R.C. precolar samples not available GSRC0089 517.58 2.346,613 331 320 -55 81.0 R.C. precolar samples not available GSRC0000 517.	Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From Width Au (m) (m) (g/t)		
CATCHOOR CLARKOOR Samples not available GSRCCORR S17,451 2,346,551 328 320 -55 81.0 RC precollar Samples not available GSRCCORR S17,511 2,346,551 328 320 -55 81.0 RC precollar Samples not available GSRCCORR S17,531 2,346,511 328 320 -55 81.0 RC precollar Samples not available GSRCCORR S17,53 2,346,511 324 320 -55 81.0 RC precollar samples not available GSRCCORR S17,58 2,346,61 324 320 -55 81.0 RC precollar samples not available GSRCCORR S17,58 2,346,61 324 -53 13.7 D0 hole sa	GSRC00979	517,386	2,346,540	335	320	-60	81.0	RC precollar	samples not available		
CARLONDAL Data	GSRC00980	517,496	2,346,532	330	320	-55	81.0	RC precollar	samples not available		
According Data	GSRC00981	517,549	2,346,512	332	320	-55	81.0	RC precollar	samples not available		
Cardioxov Cardioxov Cardioxov Cardioxov Cardioxov Cardioxov Cardioxov GSRC0086 517,584 2,346,581 328 320 -55 81.0 RC precollar samples not available GSRC0088 517,571 2,346,581 328 320 -55 81.0 RC precollar samples not available GSRC0088 517,571 2,346,581 328 320 -55 81.0 RC precollar samples not available GSRC0088 517,573 2,346,681 328 320 -55 81.0 RC precollar samples not available GSRC0098 517,586 2,346,681 324 320 -55 43.6 D hole samples not available GSRC0000 517,586 2,346,679 330 320 -60 81.0 RC precollar samples not available GSRC0000 517,516 2,346,679 330 320 -60 81.0 RC precollar samples not available GSRC01001 517,516 2,346,679 <td>GSRC00982A</td> <td>517,516</td> <td>2,346,554</td> <td>329</td> <td>320</td> <td>-55</td> <td>81.0</td> <td>RC precollar</td> <td>samples not available</td>	GSRC00982A	517,516	2,346,554	329	320	-55	81.0	RC precollar	samples not available		
Chinocode Lay Lay Lay Lay Lay Lay <thlay< th=""> Lay <thlay< th=""></thlay<></thlay<>	GSRC00983	517,470	2,346,513	333	320	-55	81.0	RC precollar	samples not available		
Cancelocal Explana Explana Explana Explana Explana Explana GSRC0096 \$17,573 2,346,534 228 220 -55 8.10 RC precollar Samples not available GSRC0096 \$17,538 2,346,638 328 320 -55 8.10 RC precollar Samples not available GSRC0096 \$17,586 2,346,631 324 320 -55 61.0 RC precollar Samples not available GSRC0096 \$17,586 2,346,631 324 320 -55 45.3 DD hole Samples not available GSRC0096 \$17,582 2,346,679 330 320 -60 81.0 RC precollar Samples not available GSRC01002 \$17,518 2,346,679 330 320 -60 81.0 RC precollar Samples not available GSRC01002 \$17,121 2,346,64 332 320 -55 81.0 RC precollar Samples not available GSRC01002 \$17,48 2,346,692	GSRD00984	517,461	2,346,570	328	320	-55	279.9	RC precollar	samples not available		
Chilcocol Chilcocol Chilcocol Chilcocol Chilcocol Chilcocol GSRC0097 517,533 2,346,514 324 320 -55 8.10 RC precollar Samples not available GSRC0097 517,538 2,346,618 324 320 -55 8.10 RC precollar Samples not available GSRC0097 517,538 2,346,618 324 320 -55 8.10 RC precollar Samples not available GSRC0097 517,538 2,346,619 330 320 -60 8.10 RC precollar Samples not available GSRC00005 517,548 2,346,679 330 320 -60 8.10 RC precollar Samples not available GSRC01001 517,552 2,346,654 322 320 -55 8.10 RC precollar Samples not available GSRC01002 517,516 2,346,654 322 320 -55 8.10 RC precollar Samples not available GSRC01002 517,483 2,346,592 327	GSRC00985	517,584	2,346,581	328	320	-55	81.0	RC precollar	samples not available		
Cardination Cardination Cardination Cardination Cardination CSRC00988 517,555 2,346,618 324 320 -55 81.0 RC precollar Samples not available CSRC00989 517,556 2,346,613 324 320 -55 81.0 RC precollar samples not available CSRC00989 517,556 2,346,613 324 320 -55 453.6 DD hole Samples not available CSRC00989 517,558 2,346,679 330 320 -60 81.0 RC precollar samples not available CSRC0100 517,548 2,346,679 330 320 -60 81.0 RC precollar samples not available CSRC0100 517,558 2,346,664 322 320 -55 81.0 RC precollar samples not available CSRC01007 517,458 2,346,669 331 320 -55 81.0 RC precollar samples not available CSRC01007 517,453 2,346,669 331 3	GSRC00986	517,571	2,346,597	328	320	-55	81.0	RC precollar	samples not available		
Chilcolo Surj.	GSRC00987	517,533	2,346,534	328	320	-55	81.0	RC precollar	samples not available		
Chinecolosis F17,568 C,346,631 324 320 Chine Representation GSD000991 517,568 2,346,631 324 320 -55 45.8 DD hole Samples not available GSD000991 517,588 2,346,619 330 320 -60 45.0 RC precollar Samples not available GSR00100 517,581 2,346,661 332 320 -60 81.0 RC precollar Samples not available GSR00100 517,518 2,346,654 322 320 -60 81.0 RC precollar Samples not available GSR00100 517,516 2,346,654 322 320 -55 81.0 RC precollar Samples not available GSR00100 517,251 2,346,654 325 320 -55 81.0 RC precollar Samples not available GSR00100 517,253 2,346,674 325 320 -55 81.0 RC precollar Samples not available GSR00101 517,485 2,346,684	GSRC00988	517,555	2,346,618	324	320	-55	81.0	RC precollar	samples not available		
CARCODOS F17,157 2,346,291 3.14 3.20 6.0 Representation GSDD00991 517,457 2,346,513 331 320 -55 453.6 DD hole Samples not available GSD00991 517,657 2,346,619 330 320 -60 45.0 RC precolar Samples not available GSR01001 517,552 2,346,700 332 320 -60 81.0 RC precolar Samples not available GSR01002 517,516 2,346,64 332 320 -55 81.0 RC precolar Samples not available GSR01003 517,568 2,346,659 326 320 -55 81.0 RC precolar Samples not available GSR01007 517,483 2,346,699 331 320 -55 81.0 RC precolar Samples not available GSR01010 517,457 2,346,674 320 -60 81.0 RC precolar Samples not available GSR01011 517,457 2,346,673 320 -60<	GSRC00989	517,538	2,346,638	328	320	-55	61.0	RC precollar	samples not available		
Concords Difference Difference Difference Difference CSDD0094 517,058 2,346,49 366 54 -53 135.7 Do hole Samples not available CSD00090 517,558 2,346,664 332 320 -60 81.0 RC precollar Samples not available CSRC01002 517,558 2,346,656 326 320 -60 81.0 RC precollar Samples not available CSRC01005 517,121 2,346,566 326 320 -55 81.0 RC precollar Samples not available CSRC01006 517,121 2,346,592 327 320 -55 81.0 RC precollar Samples not available CSRC01007 517,483 2,346,690 331 320 -55 81.0 RC precollar Samples not available CSRC0101 517,57 2,346,686 335 320 -55 81.0 RC precollar samples not available CSRC01012 517,458 2,346,684 347 320	GSRC00990	517,586	2,346,631	324	320	-60	81.0	RC precollar	samples not available		
CODECORSAL STAGE STAGE STAGE STAGE STAGE GSRC01000 STA,SAB 2,346,679 330 320 -60 45.0 RC precollar samples not available GSRC01001 STA,SAB 2,346,664 332 320 -60 81.0 RC precollar Samples not available GSRC01003 STA,SAB 2,346,656 320 -60 81.0 RC precollar Samples not available GSRC01006 STA,TAB 2,346,659 327 320 -55 81.0 RC precollar Samples not available GSRC01007 STA,483 2,346,674 325 320 -55 81.0 RC precollar Samples not available GSRC0100 STA,533 2,346,674 325 320 -55 81.0 RC precollar Samples not available GSRC0101 STA,533 2,346,686 335 320 -55 81.0 RC precollar Samples not available GSRC01011 STA,983 2,346,686 335 320 <td< td=""><td>GSDD00991</td><td>517,457</td><td>2,346,531</td><td>331</td><td>320</td><td>-55</td><td>453.6</td><td>DD hole</td><td>samples not available</td></td<>	GSDD00991	517,457	2,346,531	331	320	-55	453.6	DD hole	samples not available		
CARCORO Difference Difference Difference Difference GSRC01001 517,532 2,346,670 332 320 -60 81.0 RC precollar samples not available GSRC01002 517,516 2,346,664 332 320 -60 81.0 RC precollar samples not available GSRC01006 517,121 2,346,659 321 320 -55 81.0 RC precollar samples not available GSRC01007 517,483 2,346,699 331 320 -55 81.0 RC precollar samples not available GSRC01008 517,470 2,346,674 325 320 -58 81.0 RC precollar samples not available GSRC01010 517,573 2,346,674 325 320 -55 81.0 RC precollar samples not available GSRC01010 517,573 2,346,684 347 320 -60 81.0 RC precollar samples not available GSRC01012 517,484 2,346,684 347 320	GSDD00994	517,085	2,346,419	366	54	-53	135.7	DD hole	samples not available		
CARCODOL S17, S12 Z,346, 664 S12 S23 S20 S15 S10 RC precollar samples not available GSRC01003 S17,568 2,346,656 326 320 -65 81.0 RC precollar samples not available GSRC01005 S17,43 2,346,654 331 320 -55 81.0 RC precollar samples not available GSRC01008 S17,430 2,346,674 325 320 -55 81.0 RC precollar samples not available GSRC01010 S17,573 2,346,674 325 320 -55 81.0 RC precollar samples not available GSRC0101 S17,458 2,346,684 347 320 -55 81.0 RC precollar samples not available GSRC01012 S17,445 2,346,684 347 320 -55 61.0	GSRC01000	517,548	2,346,679	330	320	-60	45.0	RC precollar	samples not available		
CARCOLOGIA CARCOLOGIA CARCOLOGIA CARCOLOGIA CARCOLOGIA CARCOLOGIA CARCOLOGIA CARDENA GSRCOLOGIA S17,568 2,346,656 326 320 -60 81.0 RC precollar samples not available GSRCOLOGIA S17,143 2,346,6543 333 140 -55 81.0 RC precollar samples not available GSRCOLOGIA S17,430 2,346,609 331 320 -55 81.0 RC precollar samples not available GSRCOLOGIA S17,57 2,346,609 335 320 -55 81.0 RC precollar samples not available GSRCOLO10 S17,573 2,346,684 347 320 -60 81.0 RC precollar samples not available GSRCOLO11 S17,498 2,346,684 347 320 -60 81.0 RC precollar samples not available GSRCOLO12 S17,493 2,346,683 323 140 -55 61.0 RC precollar samples not available GSRCOLO12	GSRC01001	517,532	2,346,700	332	320	-60	81.0	RC precollar	samples not available		
CARCEQ103 CARCEQ103 <thcarceq103< th=""> <thcarceq103< th=""> <thc< td=""><td>GSRC01002</td><td>517,516</td><td>2,346,664</td><td>332</td><td>320</td><td>-55</td><td>81.0</td><td>RC precollar</td><td>samples not available</td></thc<></thcarceq103<></thcarceq103<>	GSRC01002	517,516	2,346,664	332	320	-55	81.0	RC precollar	samples not available		
CARCEDION T11.11 T14.04,340,340 T10 Representation GSRC01007 S17,483 2,346,699 327 320 -55 81.0 RC precollar samples not available GSRC01008 S17,430 2,346,609 331 320 -55 81.0 RC precollar samples not available GSRC01009 S17,657 2,346,674 325 320 -58 81.0 RC precollar samples not available GSRC01010 S17,553 2,346,686 335 320 -55 81.0 RC precollar samples not available GSRC01012 S17,445 2,346,684 347 320 -60 81.0 RC precollar samples not available GSRC01012 S17,445 2,346,684 347 320 -60 81.0 RC precollar samples not available GSRC01013 S16,993 2,346,683 323 140 -55 61.0 RC precollar samples not available GSRC01013 S17,104 2,348,693 313 135<	GSRC01003	517,568	2,346,656	326	320	-60	81.0	RC precollar	samples not available		
CSRC01008 S17,430 2,346,609 331 320 -55 81.0 RC precollar Samples not available GSRC01009 S17,657 2,346,674 325 320 -58 81.0 RC precollar Samples not available GSRC01010 S17,553 2,346,674 325 320 -58 81.0 RC precollar Samples not available GSRC0101 S17,543 2,346,684 347 320 -60 81.0 RC precollar Samples not available GSRC01012 S17,445 2,346,684 347 320 -60 81.0 RC precollar Samples not available GSRC01012 S17,445 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSRC01013 S16,993 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSRC00841 S17,102 2,348,994 316 135 -60 100.0 RC hole no significant value GSRC00842 <td>GSRC01006</td> <td>517,121</td> <td>2,346,543</td> <td>333</td> <td>140</td> <td>-55</td> <td>71.0</td> <td>RC precollar</td> <td>samples not available</td>	GSRC01006	517,121	2,346,543	333	140	-55	71.0	RC precollar	samples not available		
CSRC02000 S17,800 S17 S12 S12 S17 Representation GSRC01009 S17,657 2,346,674 325 320 -58 81.0 RC precollar Samples not available GSRC01010 S17,553 2,346,674 325 320 -60 81.0 RC precollar Samples not available GSRC0101 S17,498 2,346,686 335 320 -55 81.0 RC precollar Samples not available GSRC01012 S17,445 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSRC01013 S16,993 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSRC0113 S16,993 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSRC0113 S16,993 2,346,994 313 135 -60 100.0 RC hole no significant value GSRC0843 S17,003 2,348,994 31	GSRC01007	517,483	2,346,592	327	320	-55	81.0	RC precollar	samples not available		
GSRC01000 S17,037 Z120 Z120 GSR G110 RC precollar Samples not available GSRC01010 S17,553 2,346,729 336 320 -60 81.0 RC precollar Samples not available GSRC01011 S17,498 2,346,686 335 320 -55 81.0 RC precollar Samples not available GSRC01012 S17,445 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSRC00841 S17,104 2,348,794 313 135 -60 100.0 RC hole no significant value GSRC00842 S17,109 2,348,994 316 135 -60 100.0 RC hole no significant value GSRC00842 S17,030 2,348,994 316 135 -60 100.0 RC hole no significant value GSRC00845 S16,901 2,348,993 315 135 -60 100.0 RC hole no significant value GSRC00845 S16,691	GSRC01008	517,430	2,346,609	331	320	-55	81.0	RC precollar	samples not available		
GSR C01012 S17,553 L,543,F12 S33 S12 G3 C12 FR precontain FR precontain Fr precontain GSR C01011 517,498 2,346,688 335 320 -55 81.0 RC precollar Samples not available GSR C01012 517,445 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSR C01013 516,993 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSR C00841 517,104 2,348,794 313 135 -60 100.0 RC hole no significant value GSR C00842 517,109 2,348,994 316 135 -60 100.0 RC hole no significant value GSR C00843 517,003 2,348,993 315 135 -60 100.0 RC hole no significant value GSR C00845 516,901 2,349,171 318 135 -60 100.0 RC hole no significant value <	GSRC01009	517,657	2,346,674	325	320	-58	81.0	RC precollar	samples not available		
SIRCORDIAL SIRCORDIAL SIRCORDIAL SIRCORDIAL SIRCORDIAL SIRCORDIAL Samples not available GSRC01012 517,445 2,346,633 323 140 -55 61.0 RC precollar samples not available GSRC01013 516,993 2,346,633 323 140 -55 61.0 RC precollar samples not available GSRC00841 517,104 2,348,794 313 135 -60 100.0 RC hole no significant value GSRC00842 517,199 2,348,994 316 135 -60 100.0 RC hole no significant value GSRC00843 517,020 2,349,191 319 135 -60 100.0 RC hole no significant value GSRC00845 516,901 2,349,171 318 135 -60 100.0 RC hole no significant value GSRC00845 516,903 2,349,171 318 135 -60 100.0 RC hole no significant value GSRC00846 516,603 2,348,	GSRC01010	517,553	2,346,729	336	320	-60	81.0	RC precollar	samples not available		
GSR C01011 FJS HABOR FJS HABOR FJS HABOR FJS HABOR FJS HABOR FILE GSR C01013 516,993 2,346,633 323 140 -55 61.0 RC precollar Samples not available GSS East sterilisation drilling - TSF 517,199 2,348,794 313 135 -60 100.0 RC hole no significant value GSR C00842 517,199 2,348,994 316 135 -60 100.0 RC hole no significant value GSR C00843 517,020 2,349,191 319 135 -60 100.0 RC hole no significant value GSR C00844 517,003 2,348,993 315 135 -60 100.0 RC hole no significant value GSR C00845 516,901 2,349,171 319 135 -60 100.0 RC hole no significant value GSR C00845 516,601 2,349,171 318 135 -60 100.0 RC hole no significant value GSR C00845 516,6	GSRC01011	517,498	2,346,686	335	320	-55	81.0	RC precollar	samples not available		
GSR C00841 510,993 2,340,033 32.3 140 6.33 01.0 RC preconal 1 GSS East sterilisation drilling - TSF GSR C00841 517,104 2,348,794 313 135 -60 100.0 RC hole no significant value GSR C00842 517,199 2,348,994 316 135 -60 100.0 RC hole no significant value GSR C00843 517,030 2,348,993 315 135 -60 100.0 RC hole no significant value GSR C00844 517,003 2,348,993 315 135 -60 100.0 RC hole no significant value GSR C00845 516,901 2,349,171 319 135 -60 100.0 RC hole no significant value GSR C00845 516,901 2,348,988 317 135 -60 100.0 RC hole no significant value GSR C00847 516,801 2,348,787 322 135 -60 100.0 RC hole no significant value	GSRC01012	517,445	2,346,684	347	320	-60	81.0	RC precollar	samples not available		
GSRC00841517,1042,348,794313135-60100.0RC holeno significant valueGSRC00842517,1992,348,994316135-60100.0RC holeno significant valueGSRC00843517,3022,349,191319135-60100.0RC holeno significant valueGSRC00844517,0032,348,993315135-60100.0RC holeno significant valueGSRC00845516,6912,349,171319135-60100.0RC holeno significant valueGSRC00846516,6982,349,171318135-60100.0RC holeno significant valueGSRC00847516,6982,349,171318135-60100.0RC holeno significant valueGSRC00849516,7012,348,787320135-60100.0RC holeno significant valueGSRC00850516,5972,348,787322135-60100.0RC holeno significant valueGSRC00851516,5972,348,787322135-60100.0RC holeno significant valueGSRC00852516,1992,349,135322135-60100.0RC holeno significant valueGSRC00852516,1992,349,035323135-60100.0RC holeno significant valueGSRC00853516,3052,348,788322135-60100.0RC holeno significant valueGS	GSRC01013	516,993	2,346,633	323	140	-55	61.0	RC precollar	samples not available		
GSRC00842517,1992,348,994316135-60100.0RC holeno significant valueGSRC00843517,3022,349,191319135-60100.0RC holeno significant valueGSRC00844517,0032,348,993315135-60100.0RC holeno significant valueGSRC00845516,9012,349,171319135-60100.0RC holeno significant valueGSRC00846516,6982,349,171318135-60100.0RC holeno significant valueGSRC00847516,8012,348,988317135-60100.0RC holeno significant valueGSRC00848516,7032,348,791320135-60100.0RC holeno significant valueGSRC00849516,7012,348,787322135-60100.0RC holeno significant valueGSRC00850516,5972,348,991319135-60100.0RC holeno significant valueGSRC00851516,5002,349,135322135-60100.0RC holeno significant valueGSRC00852516,1992,349,035323135-60100.0RC holeno significant valueGSRC00853516,3052,348,798322135-60100.0RC holeno significant valueGSRC00853516,1992,348,798323135-60100.0RC holeno significant valueGS	GSS East	sterilisatio	n drilling - ⁻	TSF							
GSRC00843517,3022,349,191319135-60100.0RC holeno significant valueGSRC00844517,0032,348,993315135-60100.0RC holeno significant valueGSRC00845516,9012,349,171319135-60100.0RC holeno significant valueGSRC00846516,6982,349,171318135-60100.0RC holeno significant valueGSRC00847516,8012,348,988317135-60100.0RC holeno significant valueGSRC00848516,9032,348,791320135-60100.0RC holeno significant valueGSRC00849516,7012,348,787322135-60100.0RC holeno significant valueGSRC00850516,5972,348,991319135-60100.0RC holeno significant valueGSRC00851516,5002,349,135322135-60100.0RC holeno significant valueGSRC00852516,1992,349,035323135-60100.0RC holeno significant valueGSRC00853516,3052,348,798322135-60100.0RC holeno significant valueGSRC00853516,3052,348,798322135-60100.0RC holeno significant valueGSRC00853516,3052,348,798322135-60100.0RC holeno significant valueGS	GSRC00841	517,104	2,348,794	313	135	-60	100.0	RC hole	no significant value		
GSRC00844 517,003 2,348,993 315 135 -60 100.0 RC hole no significant value GSRC00845 516,901 2,349,171 319 135 -60 100.0 RC hole no significant value GSRC00846 516,698 2,349,171 319 135 -60 100.0 RC hole no significant value GSRC00847 516,698 2,348,988 317 135 -60 100.0 RC hole no significant value GSRC00847 516,801 2,348,988 317 135 -60 100.0 RC hole no significant value GSRC00848 516,903 2,348,791 320 135 -60 100.0 RC hole no significant value GSRC00849 516,701 2,348,787 322 135 -60 100.0 RC hole no significant value GSRC00850 516,507 2,348,991 319 135 -60 100.0 RC hole no significant value GSRC00851 516,500 2,349,135 322 135 -60 100.0 RC hole no signif	GSRC00842	517,199	2,348,994	316	135	-60	100.0	RC hole	no significant value		
GSRC00845 516,901 2,349,171 319 135 -60 100.0 RC hole no significant value GSRC00846 516,698 2,349,171 318 135 -60 100.0 RC hole no significant value GSRC00847 516,698 2,348,988 317 135 -60 100.0 RC hole no significant value GSRC00847 516,801 2,348,791 320 135 -60 100.0 RC hole no significant value GSRC00848 516,903 2,348,791 320 135 -60 100.0 RC hole no significant value GSRC00849 516,701 2,348,791 322 135 -60 100.0 RC hole no significant value GSRC00850 516,597 2,348,991 319 135 -60 100.0 RC hole no significant value GSRC00851 516,500 2,349,135 322 135 -60 100.0 RC hole no significant value GSRC00852 516,199 2,349,035 323 135 -60 100.0 RC hole no signif	GSRC00843	517,302	2,349,191	319	135	-60	100.0	RC hole	no significant value		
GSRC00846 516,698 2,349,171 318 135 -60 100.0 RC hole no significant value GSRC00847 516,801 2,348,988 317 135 -60 100.0 RC hole no significant value GSRC00847 516,801 2,348,988 317 135 -60 100.0 RC hole no significant value GSRC00848 516,903 2,348,791 320 135 -60 100.0 RC hole no significant value GSRC00849 516,701 2,348,787 322 135 -60 100.0 RC hole no significant value GSRC00850 516,597 2,348,787 322 135 -60 100.0 RC hole no significant value GSRC00851 516,597 2,348,793 322 135 -60 100.0 RC hole no significant value GSRC00852 516,199 2,349,035 323 135 -60 100.0 RC hole no significant value GSRC00853 516,305	GSRC00844	517,003	2,348,993	315	135	-60	100.0	RC hole	no significant value		
GSRC00847 516,801 2,348,988 317 135 -60 100.0 RC hole no significant value GSRC00848 516,903 2,348,791 320 135 -60 100.0 RC hole no significant value GSRC00849 516,701 2,348,797 322 135 -60 100.0 RC hole no significant value GSRC00850 516,597 2,348,991 319 135 -60 100.0 RC hole no significant value GSRC00851 516,597 2,349,913 319 135 -60 100.0 RC hole no significant value GSRC00852 516,500 2,349,135 322 135 -60 100.0 RC hole no significant value GSRC00852 516,199 2,349,035 323 135 -60 100.0 RC hole no significant value GSRC00853 516,305 2,348,798 322 135 -60 100.0 RC hole no significant value	GSRC00845	516,901	2,349,171	319	135	-60	100.0	RC hole	no significant value		
GSRC00848 516,903 2,348,791 320 135 -60 100.0 RC hole no significant value GSRC00849 516,701 2,348,787 322 135 -60 100.0 RC hole no significant value GSRC00850 516,597 2,348,991 319 135 -60 100.0 RC hole no significant value GSRC00851 516,597 2,349,135 322 135 -60 100.0 RC hole no significant value GSRC00851 516,500 2,349,135 322 135 -60 100.0 RC hole no significant value GSRC00852 516,199 2,349,035 323 135 -60 100.0 RC hole no significant value GSRC00853 516,305 2,348,798 322 135 -60 100.0 RC hole no significant value GSRC00853 516,305 2,348,798 322 135 -60 100.0 RC hole no significant value	GSRC00846	516,698	2,349,171	318	135	-60	100.0	RC hole	no significant value		
GSRC00849 516,701 2,348,787 322 135 -60 100.0 RC hole no significant value GSRC00850 516,597 2,348,991 319 135 -60 100.0 RC hole no significant value GSRC00851 516,500 2,349,135 322 135 -60 100.0 RC hole no significant value GSRC00852 516,199 2,349,035 323 135 -60 100.0 RC hole no significant value GSRC00853 516,199 2,349,035 323 135 -60 100.0 RC hole no significant value GSRC00853 516,305 2,348,798 322 135 -60 100.0 RC hole no significant value	GSRC00847	516,801	2,348,988	317	135	-60	100.0	RC hole	no significant value		
GSRC00850 516,597 2,348,991 319 135 -60 100.0 RC hole no significant value GSRC00851 516,500 2,349,135 322 135 -60 100.0 RC hole no significant value GSRC00852 516,199 2,349,035 323 135 -60 100.0 RC hole no significant value GSRC00853 516,305 2,348,798 322 135 -60 100.0 RC hole no significant value	GSRC00848	516,903	2,348,791	320	135	-60	100.0	RC hole	no significant value		
GSRC00851 516,500 2,349,135 322 135 -60 100.0 RC hole no significant value GSRC00852 516,199 2,349,035 323 135 -60 100.0 RC hole no significant value GSRC00853 516,305 2,348,798 322 135 -60 100.0 RC hole no significant value	GSRC00849	516,701	2,348,787	322	135	-60	100.0	RC hole	no significant value		
GSRC00852 516,199 2,349,035 323 135 -60 100.0 RC hole no significant value GSRC00853 516,305 2,348,798 322 135 -60 100.0 RC hole no significant value	GSRC00850	516,597	2,348,991	319	135	-60	100.0	RC hole	no significant value		
GSRC00853 516,305 2,348,798 322 135 -60 100.0 RC hole no significant value	GSRC00851	516,500	2,349,135	322	135	-60	100.0	RC hole	no significant value		
	GSRC00852	516,199	2,349,035	323	135	-60	100.0	RC hole	no significant value		
GSRC00854 516,399 2,348,591 325 135 -60 100.0 RC hole no significant value	GSRC00853	516,305	2,348,798	322	135	-60	100.0	RC hole	no significant value		
	GSRC00854	516,399	2,348,591	325	135	-60	100.0	RC hole	no significant value		

Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From (m)	Width (m)	Au (g/t)
GSRC00855	516,202	2,348,596	323	135	-60	108.0	RC hole	no si	gnificant val	ue
GSRC00856	516,004	2,348,596	324	135	-60	100.0	RC hole	no si	ue	
GSRC00857	516,101	2,348,790	323	135	-60	100.0	RC hole	no si	ue	
GSRC00858	516,000	2,348,978	327	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00859	515,741	2,348,296	344	135	-60	100.0	RC hole	no si	gnificant val	ue
GSS East s	sterilisation	n drilling –	Camp A	-						
GSRC00860	518,706	2,348,795	307	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00871	518,803	2,349,398	307	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00872	519,004	2,349,397	311	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00890	518,907	2,348,797	305	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00891	519,108	2,348,792	301	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00892	519,206	2,348,999	304	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00893	519,007	2,348,990	306	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00894	518,812	2,348,993	315	135	-60	128.0	RC hole	no si	gnificant val	ue
GSRC00895	518,605	2,348,999	316	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00896	518,503	2,349,197	315	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00897	518,710	2,349,197	312	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00898	518,904	2,349,200	309	135	-60	100.0	RC hole	no significant value		
GSRC00899	519,106	2,349,194	307	135	-60	100.0	RC hole	no si	gnificant val	ue
GSS East	sterilisation	n drilling –	Processi	ng plant	t					
GSRC00873	517,802	2,348,098	308	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00874	517,904	2,347,899	309	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00875	518,004	2,347,697	310	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00876	517,803	2,347,698	314	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00877	517,703	2,347,900	309	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00878	517,605	2,348,096	306	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00879	517,503	2,347,898	310	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00911	517,602	2,347,700	312	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00912	517,500	2,347,497	323	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00913	517,700	2,347,504	321	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00914	517,903	2,347,509	315	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00915	517,306	2,347,496	314	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00916	517,402	2,347,701	312	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00917	517,301	2,347,897	313	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00918	517,391	2,348,099	309	135	-60	100.0	RC hole	no si	gnificant val	ue
GSRC00919	517,201	2,348,085	308	135	-60	100.0	RC hole	no significant value		
GSRC00920	517,097	2,347,905	313	135	-60	100.0	RC hole	no significant value		
GSRC00921	517,203	2,347,697	314	135	-60	100.0	RC hole	no significant value		
GSRC00922	517,105	2,347,500	318	135	-60	100.0	RC hole	no significant value		
GSRC00923	517,006	2,347,697	315	135	-60	100.0	RC hole	no significant value		
GSRC00924	516,904	2,347,897	313	135	-60	100.0	RC hole	no significant value		

Hole ID	East WGS84 36N	North WGS84 36N	Elevation	Azimuth	Dip	Depth (m)	Drill type	From (m)	Width (m)	Au (g/t)
GSS East	sterilisatior	n drilling –	West ca	mp						
GSRC00925	514,602	2,347,699	319	135	-60	100.0	RC hole	no significant value		
GSRC00926	514,401	2,347,700	321	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00927	514,304	2,347,906	323	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00928	514,202	2,347,699	324	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00929	514,112	2,347,869	321	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00930	513,903	2,347,898	322	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00952	513,804	2,347,694	330	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00953	513,898	2,347,499	328	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00954	513,803	2,347,296	334	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00955	514,098	2,347,496	325	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00956	514,207	2,347,293	336	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00957	514,299	2,347,508	334	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00958	514,500	2,347,503	323	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00959	514,002	2,347,296	357	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00960	514,003	2,347,693	341	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00966	514,366	2,347,316	338	135	-60	100.0	RC hole	no sig	nificant val	ue
GSS East	sterilisatior	n drilling –	West ca	mp	_			-		
GSRC00961	514,902	2,347,498	319	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00962	515,102	2,347,499	318	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00963	515,300	2,347,500	318	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00964	515,403	2,347,297	326	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00965	515,502	2,347,498	319	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00967	515,201	2,347,700	318	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00968	514,775	2,347,744	323	135	-60	100.0	RC hole	no sig	nificant val	ue
GSRC00969	515,200	2,347,298	324	135	-60	100.0	RC hole	sample	es not availa	able
GSRC00970	515,001	2,347,300	322	135	-60	100.0	RC hole	sample	es not availa	able
GSRC01014	514,697	2,347,503	323	135	-60	100.0	RC hole	sample	es not availa	able
GSRC01015	514,600	2,347,296	337	135	-60	100.0	RC hole	sample	es not availa	able
GSRC01016	514,801	2,347,300	323	135	-60	100.0	RC hole	sample	es not availa	able
GSRC01017	514,903	2,347,097	337	135	-60	100.0	RC hole	samples not available		
	515,096	2,347,096	335	135	-60	100.0	RC hole	samples not available		
GSRC01018	515,090	· · ·						samples not available		
GSRC01018 GSRC01019	515,301	2,347,095	333	135	-60	100.0	RC hole	sample	es not availa	able

APPENDIX 3 – JORC TABLE 1 – MEYAS SAND GOLD PROJECT

JORC 2012 Table 1 – Section 1 sampling techniques and data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Infill drilling to convert resources at GSS deposit commenced in January 2023 and is ongoing at the date of the report to which this table refers. Infill drilling completed to date comprises: 2,069 metres of core drilling in 7 completed diamond core holes, and 1,387 metres of RC drilling and 4,079 metres of core drilling in 18 completed pre-collared diamond core holes, and 888 metres of RC drilling in 7 completed RC holes, and 3,490 metres of RC drilling in 46 pre-collars drilled ahead of core drilling. Sterilisation drilling over future infrastructure areas commenced in December 2022 and is ongoing at the date of the report to which this table refers. Sterilisation drilling completed in the period to 15 April 2023 comprises: 8,536 metres of RC drilling in 85 RC holes RC samples were collected at the rig at one metre intervals and logged visually for recovery, sample condition (dry, damp, wet) and contamination. RC samples from the sterilisation drilling were composited to 4m intervals for assaying. Diamond core was collected at each drilling run, laid into core trays and then sent to the core-shed facility at MSGP camp for logging and sampling. The drill runs range from 1.5m in the weathered materials to 3m in the fresh rock.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 Infill drilling was conducted with a combination of pre-collared diamond core holes, full diamond core holes and RC holes. The depth of the RC precollar ranges from 41 to 81m, averaging 76m. The depth of the diamond tails ranges from 163 to 453.6m, averaging 312m The depth of the infill diamond holes drilled from surface ranges from 137.7m to 352.2m, averaging 269m. The depth of the RC infill holes ranges from 75m to 126m, averaging 99m. Sterilisation drilling consisted exclusively of RC holes. The depth of the sterilisation RC holes ranges from 100m to 128m, averaging 101m. Rigs were setup at surface using hand compass (magnetic North seeking). A value of +4.0 degrees was applied to correct the magnetic deviation (true North = magnetic North +4.0). RC drilling used face-sampling hammers with 136mm hole diameter. Diamond drilling used HQ core (63.5mm Ø) in weathered materials and NQ core (47.6mm Ø) in fresh rock. When drilled from surface, diamond utilised PQ core (85mm Ø) in the top material.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	RC sample recoveries were measured at the rig by weighing bulk samples. Preliminary evaluation indicates that RC sample recoveries have been satisfactory. Diamond core recoveries were measured linearly per drill run at the core-shed facility. 99% of the measurements returned 95% minimum recovery; 98% of the measurements returned 100% recovery.

Logging	preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	The Competent Person considers that there are presently insufficient data available to permit a meaningful examination of potential relationships between sample recovery and gold grade. Geological logs are available for the entire lengths of all drill holes. The logging is qualitative in nature.
	geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and	
(Sieved samples of RC chips from each metre of drilling were logged at the rig for colour, rock type, alteration type and intensity, vein quartz content, sulphide mineralisation, weathering and oxidation. The chips are stored in
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	plastic chip trays. Diamond drill core was logged at the core-shed facility at MSGP camp for geology, structure and geotechnical characteristics. Geological logging
		included colour, lithology, weathering, oxidation, vein type and vein volume percentage, sulphide species and their estimated percentage, alteration and alteration intensity. Structural logging included fault, fold, cleavage and joint orientation, lithological contacts and vein orientations. Drill core was photographed prior to cutting.
sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled,	RC drill samples from the infill drilling program were collected at the drill sites over one meter intervals. Assay sub-samples for assaying were split using a rig- mounted cone splitter and collected into plastic bags. RC infill sub-samples averaged 2.5 Kg.
	rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Diamond drill core was collected at the drill sites and laid into core trays. The core was transported to the core-shed facility at MSGP camp where it was logged and sampled. All diamond drill core was sampled. In fresh rock, core was sawn in half using a diamond blade saw, with one half collected into a plastic bag and the other half stored in core trays for reference. Samples were
5	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	normally taken at 1 metre intervals; shorter intervals were collected to respect geological contacts. The core samples averaged 89 cm in length and 3.2 Kg in weight.
i	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for	RC drill samples from the sterilisation program were collected at the drill sites over one meter intervals. 4m composite sub-samples for assaying were produced from the bulk samples using a spear and collected into plastic bags.
1	field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	All the samples – including infill and sterilisation drilling – were transported by truck into sealed plastic drums to the ASL preparation facility in the city of Atbara, located 400Km south of MSGP.
		Preparation of core and RC samples followed a standard path of drying at 105 degrees C for at least 12 hours, crushing the entire sample to 80% passing - 2mm and grinding a 1 kg split to 90% passing 75 microns. A 150g split was collected for assaying.
		Quality control measures adopted to confirm the representivity of samples at the preparation phase include:
		 Coarse blanks at an average of around 1 blank per 20 primary samples Field re-splits of RC samples at an average frequency of around one
		duplicate per 20 primary samples. - Quartz wash between every sample in crushing and pulverising
		 equipment at the preparation facility. Screening of approximately every 50 sample to check crush and grind size.
		Sample preparation techniques are considered appropriate to the style of mineralisation. Available information indicates that sample sizes are appropriate to the grain size of the material being sampled.
assay data t and d	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All the samples – including infill and sterilisation drilling – were assayed by 50g fire assay with atomic absorption finish by OMAC ALS laboratory in Ireland. The technique is considered a total extraction technique.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the	Quality control measures adopted to confirm the representivity of samples at the assaying phase include:
i	parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied	 Certified Reference Material samples at an average frequency of around one duplicate per 20 primary samples. Coarse blanks at an average of around 1 blank per 20 primary samples

Criteria	JORC Code Explanation	Commentary
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The available information indicates that the assaying of RC and core samples is free from any significant biases and is of acceptable accuracy.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	All significant mineralised intersections were checked against geological criteria in drill chips and core.
		None of the holes in the report to which this table relates were deliberately twinned.
		Geology, structure and geotechnical data were logged digitally at the rig and at the under acQuire logging modules using portable computers. The computers were synchronized with the Perseus' central acQuire database on a daily fashion. Automatic alerts set up on the logging modules prevented the
		capture of inconsistent data (overlapping intervals, non-existing logging codes, repetition of sample IDs).
		Down-hole survey data were examined for large deviations in dip or azimuth that may represent erroneous data or data entry errors and corrected on a case-by-case basis.
		Additional data checks include viewing drill hole traces, geological logging and assays in plan, section and 3D views.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All drill hole collars were surveyed by Perseus staff using differential GPS equipment with coordinates recorded in UTM grid, WGS84 Zone 36N datum.
		Down-hole surveys of the infill holes were conducted using a Reflex Gyro SprintIQ instrument (true North seeking). One measurement was taken at 9m to check the rig set-up, then every 30m and finally at the end of the hole.
	Specification of the grid system used.	Additional measurements were taken where the survey showed important deviation.
	Quality and adequacy of topographic control.	Down-hole surveys of the sterilisation holes were conducted using a Reflex EZ- shot instrument (magnetic North seeking). A value of +4.0 degrees was applied to correct the magnetic deviation (true North = magnetic North +4.0).
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Spacing between holes for the infill drilling program ranges from 20 to 40m, both vertically and horizontally.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Spacing between holes for the sterilisation drilling program is 200m.
	Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Due to the complexity of the geometry of the GSS deposit, none of the drill intercepts can be considered as representative of the true width of the mineralisation.
		The plunge of the mineralisation at GSS is interpreted to be subvertical. The dip of the hole range from -47 to -63 degrees.
		At GSS Main, where the mineralization is associate with multiple folds, the holes were drilled to N113 to intersect both the fold hinges and limbs at maximum angle.
		At GSS East, the holes were drilled to N140 and to N320 to intersect the general trend of the mineralisation at maximum angle.
Sample security	The measures taken to ensure sample security.	RC and core samples were delivered to the secure core yard facility at MSGP camp by Perseus personnel, then placed into sealed plastic drums. The samples were transported by truck to the ALS preparation facility in Atbara, where seals were carefully checked before opening the drums.
		Security guards were employed at drilling sites, the core yard facility and ALS preparation facility on a 24 hour per day basis.

Criteria	JORC Code Explanation	Commentary
		Results of field duplicates along with the general consistency of assay results between neighbouring drill holes and visual examination of the samples provide confidence in the general reliability of the assay data.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Competent Person has reviewed the available sampling and assaying quality control data and found no errors or bias likely to significantly affect the reliability of the exploration data. These reviews included review of database consistency, comparisons between database records and laboratory source files, and review of QAQC information.
		The Competent Person considers that the sample preparation, security and analytical procedures adopted for the CMA resource drilling provide an adequate basis for the reporting of Exploration Results.

JORC 2012 Table 1 – Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	During the 2022 financial year, Perseus Mining Limited acquired Orca Gold Inc. ("Orca") as announced on 28 February 2022, see news release "Perseus enters into agreement to acquire Orca Gold Inc.". The primary asset acquired from Orca is a 70% interest in the Block 14 Project that is located in northern Sudan near the border with Egypt. Orca announced completion of a feasibility study in accordance with National Instrument 43-101 ("NI 43-101") on the Block 14 Project on 14 September 2020.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The drill holes discussed in the report to which this table relates are located within the GSS mining lease. The permit is held Perseus's subsidiary Meyas Sand Minerals Co. LTD. Perseus has a 70% interest in the project, with the Government of Sudan holding a 20% stake and Meyas Nub, a local Sudanese enterprise, holding a 10% stake.
		The reported exploration areas have no known exploration-specific environmental liabilities.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration geochemical sampling, trenching and exploration and resource definition drilling have previously been carried out by Orca Gold Inc. Drill hole data deriving from work by Orca are considered reliable.
Geology	Deposit type, geological setting and style	The GSS deposit may be described as orogenic lode-style gold mineralisation.
	of mineralisation.	The deposit is located in the central portion of the Galat Sufar Andesite Domain. It is located just south of the contact between marine sediments to the north (a remnant of the Keraf sediments) and an andesitic volcanic sequence to the south. The andesitic sequence is heterogeneous comprising lava flows, pyroclastic deposits and primary volcanic breccias.
		Of importance to deposit formation, the andesite sequence contains a discrete 80 to 200 metre wide volcaniclastic-sedimentary horizon which contains dioritic sills / dykes. Mineralisation and alteration are concentrated in this unit, which is bordered to the north and south by increasingly unaltered andesitic flows and further volcaniclastics.
		The host unit has been sequentially and intensely altered by the addition of albite, sericite, silica and lastly carbonate. Alteration grades from largely unaltered andesitic lavas and volcaniclastic host rocks to strongly altered and foliated silica – sericite schists in which the protolith cannot be identified. Pyrite is by far the most dominant sulphide with chalcopyrite, sphalerite, galena, tennantite / tetrahedrite occasionally seen in core and confirmed in petrological investigation. Gold is fine grained, typically less than 40 μ m. With 95% of the gold being free gold, the remainder occurs as petzite. The gold contains ± 20% silver.
		The dominant foliation at the prospect scale (S1) is pervasively developed throughout the GSS deposit area. It is sub-vertical and strikes towards the NW ($330^{\circ} - 340^{\circ}$) at moderate to high angles to the orientation of the mineralised unit.

Criteria	JORC Code explanation	Commentary
		The GSS deposit strikes variably NW and ENE over about 2.5km strike length and is around 350m at its maximum width.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A table of drill hole and intercept details is included in the report to which this table relates.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	The cut-off grade, minimum down-hole length and maximum included internal waste are clearly stated in the report to which this table relates. Higher-grade "included" intercepts are clearly reported. No high grade has been truncated. Drill hole intercepts have not been reported as metal equivalents.
Relationship between mineralization widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Due to the complexity of the geometry of the GSS deposit, none of the drill intercepts can be considered as representative of the true width of the mineralisation. All intercepts stated in the report to which this table relates are reported as down-hole length.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate plans and sections are included in the report to which this table relates.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Holes that did not intercept significant mineralisation are shown on plans and cross-sections and "no significant value" holes are included in tables of intercepts.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The GSS deposit has been subject to extensive exploration, including: Geochemical sampling, surface mapping Approximately 160,000 metres of drilling Airborne EM, radiometrics and magnetic surveys Ground magnetics and IP The GSS deposit is presently being exploited by open pit mining.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Perseus's ongoing exploration and study programmes at GSS will focus on: Completion of the infill drilling program. Geotechnical and metallurgical studies are underway. Completion of the sterilisation drilling program. Execution of five deep holes to investigate the potential for economic mineralization below the existing resource. Execution of reconnaissance drilling other a cluster exploration targets in the vicinity of GSS.