Salmon Farming Industry Handbook

2019
Forward-looking Statements

This handbook includes forward-looking statements that reflect Mowi’s current expectations and views of future events. These forward-looking statements use terms and phrases such as "anticipate", "should", "likely", "foresee", "believe", "estimate", "expect", "intend", "could", "may", "project", "predict", "will" and similar expressions.

These forward-looking statements include statements related to population growth, protein consumption, consumption of fish (including both farmed and wild), global supply and demand for fish (and salmon in particular), aquaculture’s relationship to food consumption, salmon harvests, demographic and pricing trends, market trends, price volatility, industry trends and strategic initiatives, the issuance and awarding of new farming licences, governmental progress on regulatory change in the aquaculture industry, estimated biomass utilization, salmonid health conditions as well as vaccines, medical treatments and other mitigating efforts, smolt release, development of standing biomass, trends in the seafood industry, expected research and development expenditures, business prospects and positioning with respect to market, and the effects of any extraordinary events and various other matters (including developments with respect to laws, regulations and governmental policies regulating the industry and changes in accounting policies, standards and interpretations).

The preceding list is not intended to be an exhaustive list of all our forward-looking statements. These statements are predictions based on Mowi’s current estimates or expectations about future events or future results. Actual results, level of activity, performance or achievements could differ materially from those expressed or implied by the forward-looking statements as the realization of those results, the level of activity, performance or achievements are subject to many risks and uncertainties, including, but not limited to changes to the price of salmon; risks related to fish feed; economic and market risks; environmental risks; risks related to escapes; biological risks, including fish diseases and sea lice; product risks; regulatory risks including risk related to food safety, the aquaculture industry, processing, competition and anti-corruption; trade restriction risks; strategic and competitive risks; and reputation risks.

All forward-looking statements included in this handbook are based on information available at the time of its release, and Mowi assumes no obligation to update any forward-looking statement.
Mowi Salmon Farming Industry Handbook

The purpose of this document is to give investors and financial analysts a better insight into the salmon farming industry, and what Mowi considers to be the most important value drivers.
Table of Content

1 INTRODUCTION 6

2 POSITIONING OF SALMON 8

2.1 Seafood as part of food consumption 9
2.2 Seafood as part of overall protein consumption 10
2.3 Atlantic Salmon as part of the global protein consumption 11
2.4 Stagnating wild catch - growing aquaculture 12
2.5 Fish consumption 13
2.6 Salmonids contribute 4.4% of global seafood supply 14
2.7 Considerable opportunities within aquaculture 15
2.8 Supply of farmed and wild salmonids 16
2.9 Salmonids harvest 2018 17

3 SALMON DEMAND 18

3.1 Global macro trends 19
3.2 A healthy product 20
3.3 Resource-efficient production 21
3.4 Climate friendly production 22
3.5 Relative price development of protein products 23

4 SALMON SUPPLY 24

4.1 Total harvest of Atlantic salmon 1999-2018 25
4.2 Diminishing growth expectations 26
4.3 Few coastlines suitable for salmon farming 27

5 SUSTAINABLE PRODUCTION 28

5.1 UN’s Sustainable Development Goals 30
5.2 Sustainability along the supply chain 31
5.3 Material sustainability topics 32
5.4 The Global Salmon Initiative & the ASC 33
5.5 Sustainability of fish feed 34

6 SALMON MARKETS 36

6.1 Global trade flow of farmed Atlantic salmon 37
6.2 Farmed Atlantic salmon by market 38
6.3 Development of value vs. volume 39
6.4 Price neutral demand growth - historically 6-8% 40
6.5 Historic price development 41
6.6 Different sizes – different prices (Norway) 42

7 INDUSTRY STRUCTURE 43

7.1 Top 5-10 players of farmed Atlantic salmon 44
7.2 Number of players in producing countries 45
8 SALMON PRODUCTION AND COST STRUCTURE 46

8.1 Establishing a salmon farm 47
8.2 The Atlantic salmon life/production cycle 48
8.3 Influence of seawater temperature 50
8.4 Production inputs 51
8.5 Cost component – disease and mortality 53
8.6 Accounting principles for biological assets 54
8.7 Economics of salmon farming 55
8.8 Cost structure Norway 2009-2018 56

9 FEED PRODUCTION 57

9.1 Overview of feed market 58
9.2 Relative feeding (*) 60
9.3 Salmon feed producers 61
9.4 Salmon feed ingredients 62
9.5 Feed raw material market 64

10 FINANCIAL CONSIDERATIONS 65

10.1 Working capital 66
10.2 Capital return analysis 69
10.3 Currency overview 71
10.4 Price, cost and EBIT development in Norway 73
10.5 Effects of geographical diversification 74

11 BARRIERS TO ENTRY – LICENCES 75

11.1 Regulation of fish farming in Norway 77
11.2 Regulation of fish farming in Scotland 82
11.3 Regulation of fish farming in Ireland 83
11.4 Regulation of fish farming in Chile 84
11.5 Regulation of fish farming in Canada 85
11.6 Regulation of fish farming in the Faroe Islands 87

12 RISK FACTORS 89

12.1 Salmon disease prevention and treatment 90
12.2 Most important health risks to salmon 91
12.3 Fish health and vaccination (Norway) 92
12.4 Research and development focus 93

13 INDICATORS DETERMINING HARVEST VOLUMES 94

13.1 Projecting future harvest volumes 95
13.2 Yield per smolt 96
13.3 Development in biomass during the year 97

14 SECONDARY PROCESSING (VAP) 98

14.1 European value-added processing (VAP) industry 100
14.2 Market segment in the EU (2018) 101
14.3 The European market for smoked salmon 102

APPENDIX 103
1 Introduction
Introduction

Salmon is the common name for several species of fish of the family Salmonidae (e.g. Atlantic salmon, Pacific salmon), while other species in the family are called trout (e.g. brown trout, seawater trout). Although several of these species are available from both wild and farmed sources, most commercially available Atlantic salmon is farmed. Salmon live in the Atlantic Ocean and the Pacific, as well as the Great Lakes (North America) and other landlocked lakes.

Typically, salmon are anadromous: they are born in fresh water, migrate to the ocean, then return to fresh water to reproduce.

About 72% of the world’s salmon harvest is farmed. Farming takes place in large nets in sheltered waters such as fjords or bays. Most farmed salmon come from Norway, Chile, Scotland and Canada.

Salmon is a popular food. Salmon consumption is considered to be healthy due to its high content of protein and Omega-3 fatty acids and it is also a good source of minerals and vitamins.
2 Positioning of Salmon
Positioning of Salmon

2.1 Seafood as part of food consumption

The average human eats around 656 kg of food each year. Most of this food is produce such as vegetables, fruits, and starchy roots. Animal protein, such as seafood, poultry, pork, and beef, amounts to just under 10% of the total diet.

Meat as a food source has gradually become more important. The global per capita consumption has more than doubled since 1961, and the seafood segment is a big contributor to this increase.

Source: FAO (2013); FAOstat Food Balance Sheets
2.2 Seafood as part of overall protein consumption

The UN estimates that the global population will grow to approximately 9.77 billion by 2050. Although 70% of the Earth’s surface is covered by the ocean, only 5% of the protein sources for human consumption are produced there.

Assuming consumption per capita stays constant, this implies a 35% increase in demand for protein. The UN however, estimates that the actual demand will double. We know that resources for increased land-based protein production will be scarce, so a key question is how the production of protein sources from the sea can be expanded.

Source: FAO (2013); FAOstat Food Balance Sheets, United Nations population data; World Population Prospects: The 2018 Revision
Positioning of Salmon

2.3 Atlantic Salmon as part of the global protein consumption

Most animal protein in our diets comes from pork, poultry, and beef, with salmon consumption representing a small portion of global protein consumption.

In 2018, FAO estimated consumption of 123 million tonnes Ready to Cook Equivalent (rtc) of poultry, 120 million tonnes Carcass Weight Equivalent (cwe) of pork, and 71 million tonnes (cwe) of beef and veal.

In contrast, the total consumption of farmed Atlantic salmon was around 2.2 million tonnes (GWT). This corresponds to about 1.5 million tonnes in product weight. If we combine all salmonids both the farmed and wild it amounts to 3.2 million tonnes (GWT) in 2018.

Over the past few decades, there has been a considerable increase in total and per capita fish supply. As the fastest growing animal-based food producing sector, aquaculture is a major contributor to this, and its growth outpaces population growth.

Great progress in breeding technology, system design and feed technology in the second half of the twentieth century has enabled the expansion of commercially viable aquaculture across species and in volume. In 2013-15, China alone produced 62% of global aquaculture output, while Asia accounted for 88%.

The World Bank developed a scenario analysis in their report *Fish to 2030* (2013) predicting that aquaculture will continue to fill the supply-demand gap, and that by 2030, 62% of fish for human consumption will come from this industry.

In 2018, aquaculture accounted for 83 million tonnes (LW) destined for direct human food consumption, while wild capture accounted for 73 million tonnes (LW). However, fish has been estimated to account for only 5% of global protein consumption (and about 12% of total fish and animal protein supply).

2.5 Fish consumption

Given the expected production growth of 10% during 2018–2027 and the projected world population growth of 9% over the same period, we will most likely see a global increase in the average fish consumption level.

By 2027, per capita fish consumption is estimated to be 21.3 kg (vs. 9.9kg in the 1960s and 20.8kg in 2018). This is equivalent to another 23 million tonnes of seafood supply, which aquaculture is estimated to provide.

According to FAO, per capita consumption is expected to increase by 3% in the period 2018-2027. Latin America is expected to have the highest growth, whilst negative growth is anticipated in Africa and North America. In general, per capita fish consumption is likely to grow faster in developing countries. However, more developed economies are expected to have the highest per capita consumption.

Sources: FAO (2018); The State of World Fisheries and Aquaculture OECD-FAO (2018) Agricultural Outlook 2018-2027
Positioning of Salmon

2.6 Salmonids contribute 4.4% of global seafood supply

Although several salmon species are available from both wild and farmed sources, almost all commercially available Atlantic salmon is farmed. Even with an increase in production of Atlantic salmon of more than 800% since 1990, the total global supply of salmonids is still marginal compared to most other seafood categories (4.4% of global seafood supply). Whitefish is about ten times larger and comprises a much larger number of species.

In 2017, more Atlantic salmon was harvested than Atlantic cod. However, the harvest of Atlantic salmon was only about 23% of that of two of the largest whitefish species, tilapia and Alaska pollock.

Note: Live weight (LW) is used because different species have different conversion ratios. Source: Kontali Analyse
Positioning of Salmon

2.7 Considerable opportunities within aquaculture

The illustration above shows that Atlantic salmon has the highest level of industrialisation and the lowest level of risk compared to other aquaculture species. The size of the circles indicates volume harvested.

Although Atlantic salmon is relatively small in harvest volume compared to other species, it is a very visible product in many markets due to the high level of industrialisation.

Source: Kontali Analyse
Positioning of Salmon

2.8 Supply of farmed and wild salmonids

The general supply of seafood in the world is shifting more towards aquaculture as the supply from wild catch is stagnating in several regions and for many important species. Wild catch of salmonids varies between 700,000 and 1,000,000 tonnes GWT, whereas farmed salmonids are increasing. The total supply of salmonids was first dominated by farmed in 1999. Since then, the share of farmed salmonids has increased and has become the dominant source.

The total supply of all farmed salmonids exceeded 2.36 million tonnes (GWT) in 2018. The same year, the total catch volume of wild salmonids was a bit more than one third of farmed, with chum, pink and sockeye being the most common species.

About 20% of the total wild catch of salmon is imported frozen by China (from the US, Russia and Japan), and later re-exported as frozen fillets.

Source: Kontali Analyse
Positioning of Salmon

2.9 Salmonids harvest 2018

The chart illustrates the harvest of various salmonids in 2018, highlighting the quantities harvested and their origins. The chart shows the significant role of farmed salmonids in the market, with Atlantic salmon being the largest species by quantity. The chart also indicates the geographic distribution and demand for each salmonid species.

Atlantic salmon: By quantity, the largest species of salmonids. Farmed Atlantic salmon is a versatile product, which can be used for a variety of categories such as smoked, fresh, sushi, as well as ready-made meals. The product is present in most geographies and segments. Due to biological constraints, seawater temperature requirements and other natural constraints, farmed salmon is only produced in Norway, Chile, UK, North America, Faroe Islands, Ireland, New Zealand and Tasmania.

Large trout: Produced in Norway, Chile and the Faroe Islands, the main markets are Japan and Russia. Trout is mainly sold fresh, but is also used for smoked production.

Small trout: Produced in many countries and most often consumed locally as a traditional dish as hot smoked or portion fish. Small trout is not in direct competition with Atlantic salmon.

Coho: Produced in Chile and is mostly used for salted products. It is a competitor of trout and sockeye in the red fish market. Although Russia has increased its import of this fish over the last few years, Japan remains the largest market.

Pink: Caught in USA and Russia and used for canning, pet food and roe production. Since quality is lower than the other species it is a less valued salmonid. The fish is small in size (1.5-1.7 kg) and is caught over a very short time period.

Chum: Caught in Japan and Alaska. Most is consumed in Japan and China. In Japan, it is available as fresh, while in China it is processed for local consumption and re-exported. Little chum is found in the EU market. The catch varies in quality and part of the catch is not fit for human consumption.

Sockeye: Caught in Russia and Alaska. It is mostly exported frozen to Japan, but some is consumed locally in Russia and some canned in Alaska. Sockeye is seen as a high quality salmonid and is used for salted products, sashimi and some is smoked in the EU.

Chinook/King: Small volumes, but highly valued. Alaska, Canada and New Zealand are the main supplying countries. Most quantities are consumed locally. Chinook is more in direct competition to Atlantic salmon than the other species and is available most of the year.

Source: Kontali Analyse
3 Salmon Demand
3.1 Global macro trends

The industry is a good fit with the global macro trends, as Atlantic salmon is a healthy, resource-efficient and climate-friendly product produced in the sea.

The global population is growing, resulting in increased global demand for food. As the middle class is growing in large emerging markets, we expect consumption of high-quality proteins to increase.

The health benefits of seafood are increasingly being promoted by global health authorities. The EAT-Lancet Commission recommends increased consumption of fish, dry beans and nuts as sustainable, healthy protein sources.

Global fisheries are to a large extent fully exploited, meaning the supply of wild fish has limited potential to meet the growing demand for marine protein.

The middle class is growing in large emerging markets, allowing more people to eat different, and more nutritious, protein rich foods, such as fish, meat and eggs.

Another demographic trend that are driving shifts in demand, is the aging population. Eating healthy becomes especially important as you age.

Climate change is the greatest environmental challenge the world has ever faced. The world must reduce its CO2 emissions footprint to avoid global warming. For food production soil erosion is an increasing issue, challenging the world to investigate new ways of feeding the population.
3.2 A healthy product

Atlantic salmon is rich in long chain omega-3, EPA and DHA, which reduce the risk of cardiovascular disease. Data also indicates that EPA and DHA reduce the risk of a large number of other health issues.

Salmon is nutritious, rich in micronutrients, minerals, marine omega-3 fatty acids, high-quality protein and several vitamins, and represents an important part of a varied and healthy diet. FAO highlights that: “Fish is a food of excellent nutritional value, providing high quality protein and a wide variety of vitamins and minerals, including vitamins A and D, phosphorus, magnesium, selenium and iodine in marine fish”.

The substantial library of evidence from multiple studies on the nutrients present in seafood indicates that including salmon in your diet will improve your overall nutrition and may even yield significant health benefits. Considering global obesity rates, governments and food and health advisory bodies around the world are encouraging people of all ages to increase their seafood intake, with particular focus on the consumption of oily fish, such as salmon. The U.S. Department of Health and the US Department of Agriculture recommend an intake of at least 237 grams of seafood per week for Americans in general. The UK National Health Service, the Norwegian Directorate of Health and several other national health organisations recommend eating fish at least twice a week.

3.3 Resource-efficient production

To optimize resource utilization, it is vital to produce animal proteins in the most efficient way. Protein resource efficiency is expressed as “Protein retention”, which is a measure of how much animal food protein is produced per unit feed protein fed to the animal. Salmon has a protein retention of 31%, which is the most efficient in comparison with chicken, pork, and cattle (see table above).

Energy retention is measured by dividing energy in edible parts by gross energy fed. Both cattle and Atlantic salmon has a high energy retention compared to pork and chicken.

The main reason why salmon convert protein and energy to body muscle and weight so efficiently is because they are cold-blooded and therefore do not have to use energy to heat their bodies. They also do not use energy standing up like land animals.

- Edible yield is calculated by dividing edible meat by total body weight. As much as 68% of Atlantic salmon is edible meat, while other protein sources have a higher level of waste or non-edible meat.

- Feed conversion ratios measure how productive the different animal protein productions are. In short, this tells us the kilograms of feed needed to increase the animal’s bodyweight by one kg. Feed for Atlantic salmon is high in protein and energy which accounts for the feed conversion ratio being even more favourable for Atlantic salmon than protein and energy retention when compared with land animal protein productions.

- Edible meat per 100kg of feed fed: The combination of the FCR ratio and edible yield, gives salmon a favourably high quantity of edible meat per kg of feed fed.

Salmon Demand

3.4 Climate friendly production

In addition to its resource-efficient production, farmed fish is also a climate-friendly protein source. It is expected to become an important solution to providing the world with vitally important proteins while limiting the negative effect on the environment. There is for example less environmental impact in salmon production compared to other protein producers.

When comparing the environmental impact of farmed salmon to traditional meat production, the carbon footprint for the farmed salmon is 2.9 carbon equivalents per kilogram of edible product whilst corresponding figures are 2.7kg and 5.9kg of edible product for chicken and pork, respectively. Cattle’s carbon footprint is as much as 30 carbon equivalents per kilogram of edible product.

Freshwater is a renewable but limited natural resource, and human activities can cause serious damage to the surrounding environment. In Norway, farmed Atlantic salmon requires 2,000 litres per kg of fresh water in production which is significantly less than other proteins.

<table>
<thead>
<tr>
<th>Carbon Footprint</th>
<th>Kg CO2 / Kg edible meat</th>
<th>2.9 kg</th>
<th>2.7 kg</th>
<th>5.9 kg</th>
<th>30 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water consumption</td>
<td></td>
<td>2,000*</td>
<td>4,300</td>
<td>6,000</td>
<td>15,400</td>
</tr>
</tbody>
</table>

*Total water footprint for farmed salmonid fillets in Scotland, in relation to weight and content of calories, protein and fat.

Note: 1) The figure reflects total water footprint for farmed salmonid fillets in Scotland, in relation to weight and content of calories, protein and fat.

Salmon Demand

3.5 Relative price development of protein products

Along with chicken, beef and pork prices, salmon prices have become relatively more expensive over the last decade.

Salmon has historically always been a rather expensive product on the shelves.

Source: International Monetary Fund
4 Salmon Supply
4.1 Total harvest of Atlantic salmon 1999-2018

<table>
<thead>
<tr>
<th>CAGR</th>
<th>Global</th>
<th>Norway</th>
<th>Chile</th>
<th>UK</th>
<th>North America</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-2018</td>
<td>6 %</td>
<td>6 %</td>
<td>10 %</td>
<td>1 %</td>
<td>3 %</td>
<td>5 %</td>
</tr>
<tr>
<td>2009-2018</td>
<td>6 %</td>
<td>4 %</td>
<td>12 %</td>
<td>1 %</td>
<td>2 %</td>
<td>6 %</td>
</tr>
<tr>
<td>2018-2022E</td>
<td>4 %</td>
<td>5 %</td>
<td>1 %</td>
<td>6 %</td>
<td>2 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Note: Figures are in thousand tonnes GWT and “Others” includes the Faroe Islands, Ireland, Tasmania, Iceland and Russia.
Source: Kontali Analyse
Supply of Atlantic salmon has increased by 443% since 1995 (annual growth of 8%). The annual growth has diminished in recent years with 6% annual growth in the period 2009-2018. Kontali Analyse expects growth to diminish further, and has projected 4% annual growth from 2018 to 2022.

The background for this trend is that the industry has reached a production level where biological boundaries are being pushed. It is therefore expected that future growth can no longer be driven only by the industry and regulators as measures are implemented to reduce its biological footprint. This requires progress in technology, development of improved pharmaceutical products, implementation of non-pharmaceutical techniques, improved industry regulations and intercompany cooperation.

Too rapid growth without these measures in place adversely impacts biological indicators, costs, and in turn output.

Note: Mowi does not provide guidance of industry supply except from guidance depicted in quarterly presentations.

Source: Kontali Analyse, Population Division of the Department of Economic and Social Affairs of the United Nations. World Population Prospects: The 2018 Revision
The main coastal areas adopted for salmon farming are depicted on the above map. The coastlines are within certain latitude bands in the Northern and Southern Hemisphere.

A key condition is a temperature range between zero and 18-20°C. The optimal temperature range for salmon is between 8 and 14°C.

Salmon farming also requires a certain current to allow a flow of water through the farm. The current must however be below a certain level to allow the fish to move freely around in the sites. Such conditions are typically found in waters protected by archipelagos and fjords and this rules out many coastlines.

Certain biological parameters are also required to allow efficient production. Biological conditions vary significantly within the areas adopted for salmon farming and are prohibitive in certain other areas.

Political willingness to permit salmon farming and to regulate the industry is also required. Licence systems have been adopted in all areas where salmon farming is carried out.

Land based salmon farming (full cycle) has attracted increased investments in the past years. To date, only limited volumes have been harvested on land, however, this could change going forward as new production technologies continue to mature.
5 Sustainable production
Sustainable production

70% of our planet is covered by water, yet the United Nations Food and Agriculture organization (FAO) estimates that only around 2% of the world’s food supply comes from the ocean. This includes both farm-raised and wild-caught fish. We know that global consumption of farm-raised seafood will increase in the future, both in terms of overall volumes and as a percentage of the global food supply, for the following reasons:

- The global population is growing at an unprecedented rate.
- The middle class is growing in large emerging markets.
- The health benefits of seafood are increasingly being promoted by global health authorities.
- Aquaculture is more carbon efficient than land-based livestock production.
- The supply of wild fish has limited growth potential.
- Soil erosion necessitates new ways of thinking about how to feed the world.

These global trends offer the seafood industry a unique opportunity to deliver food that is both healthy and sustainable.
Sustainable production

5.1 UN’s Sustainable Development Goals

The SDGs which were agreed by all 193 UN member states in 2015 guide governments, civil society and the private sector in a collaborative effort for change towards sustainable development. Out of the 17 SDGs, the industry can contribute significantly to at least ten: good health and well-being, gender equality, decent work and economic growth; reduced inequalities, sustainable cities and communities, industry, innovation and infrastructures; responsible consumption and production; climate action; life below water and partnership for the goals.
Sustainable production

5.2 Sustainability along the supply chain

Salmon farmers are heavily affected by social issues, such as workers’ rights and public acceptance of fish farming. Climate change, environmental regulations and certification requirements may have an impact on the supply chain by affecting the availability of both farming areas and raw ingredients used to produce feed. Trade barriers may have a significant impact on our products’ availability in different markets.

In turn, the industry has an impact on people and the environment along its value chain. Salmon farmers create jobs and contribute to the economic development of local communities. In addition, the health benefits of our products clearly have a positive impact on people and society in general.

Health and safety issues and labour rights are also key contributors of the social impact industry players have both in their own operations and at their suppliers. Farmers also influence social and environmental standard-setting. In terms of environmental impacts, salmon farmers contribute to greenhouse gas emissions along the supply chain, and affect the local ecosystem in the vicinity of farming operations. However, investment in new technology and infrastructure will lead to more sustainable farming methods that could also be relevant to other fish species.
Sustainable production

5.3 Material sustainability topics

Carbon footprint
Fish farming is among the most climate-friendly forms of animal husbandry. The carbon footprint is only 2.9 kg of carbon equivalent per kg of edible product, compared to 5.9 kg of carbon equivalent per edible kg of pork and 30.0 kg per edible kg of beef (SINTEF, 2009).

For the consumer, replacing pork and beef with fish would significantly reduce their personal carbon footprint (daily greenhouse gas (GHG) emissions).

Plastic management
The presence of microplastic in the world’s ocean is an emerging issue that fish farmers have started to focus on. Fish farmers are undertaking various initiatives to reduce plastic waste, such as improving waste management, engaging in beach clean-up events around the world, and monitoring the presence of microplastic and plastic-related contaminants in fish.

Escape prevention
Because escaped farm-raised salmon may have a negative impact on the environment due to interactions and interbreeding with wild populations, fish farmers have a target of zero escapes.

Fish health and welfare
Caring about fish welfare is an ethical responsibility. The industry works every day to safeguard the health and welfare of fish through effective sea lice management, and to reduce medicine use by optimizing fish survival and preventing disease.

Biodiversity
The industry needs healthy oceans to drive sustainable salmon farming. Farmers pay attention to the critical and highly sensitive environment.
Sustainable production

5.4 The Global Salmon Initiative & the ASC

Progress in key sustainability topics can be achieved faster by focusing on key partnerships. A number of industry players work closely with the Global Salmon Initiative on transparency and sustainability reporting and on various initiatives linked with ASC certification, non-medicinal approaches to sea lice management and sustainable feed sources. The Global Sustainable Seafood Initiative plays an important role in providing clarity on seafood certification. As part of the Keystone dialogues, Mowi and other key players in the seafood industry have launched a joint global initiative called “Seafood Business for Ocean Stewardship” (SeaBOS).

The Global Salmon Initiative (GSI) is a leadership initiative by global farmed salmon producers, focused on making significant progress towards fully realising a shared goal of providing a healthy and sustainable source of protein to feed a growing population, whilst minimising our environmental footprint, and continuing to improve our social contribution. GSI’s focus areas are biosecurity (priority is sea lice), standards (ASC), feed and nutrition (fish meal and oil), and improving industry transparency.

The Aquaculture Stewardship Council (ASC), founded in 2010 by WWF and IDH (Dutch Sustainable Trade Initiative), is an independent non-profit organisation with global influence. ASC aims to be the world’s leading certification and labelling programme for sustainably farmed seafood. The ASC’s primary role is to manage the global standards for responsible aquaculture.

ASC works with aquaculture producers, seafood processors, retail and foodservice companies, scientists, conservation groups and consumers. The ASC logo sends a strong message to consumers about the environmental and social integrity of the product they are purchasing.

Sustainable production

5.5 Sustainability of fish feed

Over the last two decades, there has been a global trend of growing awareness about the economic, social and environmental aspects of optimal use of fishery by-products, and of the importance of reducing discards. Nowadays, more and more by-products are being used in feed, and a growing percentage of fishmeal is being obtained from trimmings and other residues from the preparation of fish fillets.

According to the UN, 7 million tonnes of wild catch are destroyed or discarded as non-commercial harvest annually by commercial fisheries. This figure could have been converted into an annual fish oil quantity of 0.5 million tonnes, i.e. close to 80% of the tonnage used in salmon and trout farming (UN, 2010).

In FAO’s State of World Fisheries and Aquaculture report (2014) it states that in 2012, more than 86% of world fish production was utilised for direct human consumption. The remaining 14% was destined for non-food uses, of which 75% was reduced to fishmeal and fish oil. Although the FAO encourages using more fish directly for human consumption, they are of the opinion that it is more efficient, in a protein-hungry world, to harvest the unmarketable species for animal feed, subsequently consumed by man, than to not harvest the fish at all.

Nonetheless, we have seen a significant decline in the use of fish meal and fish oil in salmon feed due to changes in recipes. While fish meal and fish oil have traditionally been the main ingredients, with reduced availability and increased prices, it is now common practice to substitute these with cheaper and more readily available non-marine raw materials. Fish meal protein is being substituted with plant proteins, such as soya concentrates and sunflower meal or with poultry by-products, such as feather meal (not used in Europe).

A report from Nofima (Ytrestøyl et. al., 2014) shows that the average Norwegian salmon diet in 1990 contained 65% fish meal and 24% fish oil and that this had reduced to 19% and 11% respectively in 2013. Holtermann has estimated the same numbers to be 17% and 9% in 2014. At these low levels, salmon farming is a net producer of marine protein, in others words more fish protein is produced than is used to make the feed. Mowi used 10.3% fish oils and 13.2% fish meal in their salmon feed in 2018.

Sustainable production

Substitution of marine raw materials has not been found to have any negative effect on growth, susceptibility to disease, or quality of the fish if the fish’s own nutrient requirements are being covered. The downward trend in the use of marine ingredients continues and with the ability of Atlantic salmon to utilise alternative feed ingredients, lack of feed raw materials should not be a threat to the growth of the industry. However, there will be increased competition for the best quality raw materials and feed prices may therefore be affected.
6 Salmon Markets
Historically, the main markets for each production origin have been:
- Norway – EU, Russia (before import-ban in 2014) and Asia
- Chile – USA, South America and Asia
- Canada – USA (west coast)
- Scotland – mainly domestic/within the UK (limited export)

Each producing region has historically focused on developing the nearby markets. As salmon is primarily marketed as a fresh product, time and cost of transportation has driven this trend.

A relatively high price differential is therefore required to justify transatlantic trade as this incurs the cost of airfreight. Such trade varies from period to period and depends on arbitrage opportunities arising from short-term shortages and excess volumes from the various producing countries.

The Asian market is generally shared as transportation costs are broadly similar from all producing regions.

Distribution of frozen salmon is much more straightforward, but this category is decreasing in size.

Note: Figures from 2018 and in thousand tonnes GWT. Not all markets are included. Source: Kontali Analyse
6.2 Farmed Atlantic salmon by market

Europe (incl. Russia) and North America are by far the largest markets for Atlantic salmon. However, emerging markets are growing at significantly higher rates than these traditional markets. As all harvested fish is sold and consumed in the market. The market for Atlantic salmon has on average increased by 5.3% in all markets over the last 10 years and by 6% over the last 20 years.

Note: Figures are in thousand tonnes GWT
Source: Kontali Analyse
The value of salmon sold in 2018 is two times higher than in 2009, while the volume increased by 64% (CAGR 5%) in the same period, illustrating the strong underlying demand for salmon.
Salmon Markets

6.4 Price neutral demand growth - historically 6-8%

The correlation between change in global supply and average FCA Oslo price (EUR) is very strong. In the period 2000 - 2011, change in supply explained 84% of the change in price using linear regression. In 2011-2012 demand for salmon significantly overperformed.

The price correlation across regional markets is generally strong for Atlantic salmon.

Growth in global supply of Atlantic salmon was 180% in the period 2000-2018 (CAGR 6%), varying between -4% and 22% annually. Variation in growth rates has been the main determinant for the variation in prices. Annual average prices have varied between EUR 2.42 (2003) and EUR 6.61 (2016).

Source: Kontali Analyse
Salmon Markets

6.5 Historic price development

As salmon is perishable and marketed fresh, all production in one period must be consumed in the same period. In the short term, the production level is difficult and expensive to adjust as the planning/production cycle is three years long. Therefore, the supplied quantity is very inelastic in the short term, while demand shifts according to the season. This is the main reason for the price volatility of the market.

Factors affecting market price for Atlantic salmon are:
Supply (absolute and seasonal variations)
Demand (absolute and seasonal variations)
Globalisation of the market (arbitrage opportunities between regional markets)
Presence of sales contracts reducing quantity availability for the spot market
Flexibility of market channels
Quality
Disease outbreaks
Food scares

Comparing FCA Oslo, FOB Miami and FOB Seattle, there is a clear indication of a global market as prices correlate to a high degree.

As in most commodity industries, producers of Atlantic salmon experience high volatility in the price achieved for the product. The average price (GWT based) for Norwegian whole salmon since 2009 has been about EUR 5.1/kg (NOK 43.9/kg), for Chilean salmon fillet (3-4lb) USD 4.7/lb (USD 10.3/kg), and for Canadian salmon (10-12lb) USD 3.1/lb (USD 6.8/kg). The pricing of Scottish and Faroese salmon is linked to the price of Norwegian salmon. The price of Scottish salmon normally has a premium to Norwegian salmon. Faroese salmon used to trade at a small discount to Norwegian salmon. However, due to geopolitical events in recent years, salmon from the Faroes now trades at a premium over Norwegian salmon in selected markets.

Source: Kontali Analyse, Nasdaq, Urner Berry. Dotted line represent annual average FCA Oslo
The main reason for differences in size is the biological production process in which individual fish grow at different speeds. A farm holding fish at harvestable size, will show a normally distributed size distribution. This leads to the majority of fish being harvested at 4/5 kg GWT and smaller quantities of smaller and larger fish.

The processing industry in Europe mainly uses 3-6 kg GWT but niche markets exist for small and large fish. As these markets are minor compared to the main market, they are easily disrupted if quantities become too large. Generally, small fish sizes are discounted, and large sized fish are sold at premium as showed in the graph above.

Drivers behind smaller harvest size can be disease, early harvest when there is a need for cash flow, or early harvest to realise ongoing capacity. Larger fish (6-7kg +) may be a result of economies of scale/lower production costs, production for niche markets or other market requirements.

Source: Kontali Analyse
7 Industry Structure
Industry Structure

7.1 Top 5-10 players of farmed Atlantic salmon

<table>
<thead>
<tr>
<th></th>
<th>Top 10 - Norway</th>
<th>Top 5 - United Kingdom</th>
<th>Top 5 - North America</th>
<th>Top 10 - Chile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mowi</td>
<td>230,400</td>
<td>Mowi</td>
<td>Cooke Aquaculture</td>
<td>"New Aquachile" (Agrosuper) 109,000</td>
</tr>
<tr>
<td>2 Salmar</td>
<td>142,500</td>
<td>The Scottish Salmon Co.</td>
<td>Mowi</td>
<td>Mitsubishi / Cermaq 66,000</td>
</tr>
<tr>
<td>3 Lerøy Seafood</td>
<td>137,800</td>
<td>Scottish Seafoods</td>
<td>Mitsubishi / Cermaq</td>
<td>Salmones Multiexport 64,800</td>
</tr>
<tr>
<td>4 Mitsubishi / Cermaq</td>
<td>57,400</td>
<td>Cooke Aquaculture</td>
<td>Grieg Seafood</td>
<td>Mowi 53,200</td>
</tr>
<tr>
<td>5 Grieg Seafood</td>
<td>46,100</td>
<td>Grieg Seafood</td>
<td></td>
<td>"Blumar" 47,600</td>
</tr>
<tr>
<td>6 Nova Sea</td>
<td>37,900</td>
<td>*</td>
<td></td>
<td>Camanchaca 43,600</td>
</tr>
<tr>
<td>7 Nordlaks</td>
<td>36,100</td>
<td></td>
<td></td>
<td>Australis Seafood 34,500</td>
</tr>
<tr>
<td>8 Norway Royal Salmon</td>
<td>36,000</td>
<td></td>
<td></td>
<td>Vientisqueros 30,300</td>
</tr>
<tr>
<td>9 Sinkaberg-Hansen</td>
<td>27,500</td>
<td></td>
<td></td>
<td>Invermar 20,000</td>
</tr>
<tr>
<td>10 Alsaker Fjordbruk</td>
<td>26,000</td>
<td></td>
<td></td>
<td>Marine Farm 19,800</td>
</tr>
</tbody>
</table>

Top 10: 777,700
Others: 350,400
Total: 1,128,100

Top 5: 129,300
Others: 8,900
Total: 138,200

All figures in tonnes GWT
* The industry in the UK and North America are best described by top 5 and top 4 producers, respectively.

Mowi Group represents the largest total production, harvesting around one fifth of the salmon produced in Norway, and about one third of the total production in North America and the UK.

In Norway and Chile there are several other producers of a significant quantity of Atlantic salmon. In Chile, several of the companies also produce other salmonids, such as Coho and large trout.

Note: 2019E volumes are Mowi’s guiding figures
Source: Kontali Analyse, Mowi, Quarterly reports
Industry Structure

7.2 Number of players in producing countries

The graph shows the number of players producing 80% of the farmed salmon and trout in each major producing country.

Historically, the salmon industry was dominated by several small firms. As illustrated above, it was the case in Norway, and to some extent in Scotland and Chile.

During the last decades the salmon farming industry has been through a period of consolidation in all regions and this is expected to continue.

There are approx. 160 companies owning commercial licences for salmon and trout in Norway, however some of these are controlled by other companies. The total supply is produced by around 100 companies (through themselves or subsidiaries).

There are approximately 1,350 commercial licences for the on-growing of Atlantic salmon, trout and Coho in Chile. Around 90% of these are held by 13 companies with the 10 largest firms accounting for 82% of the total licences. Only between 300 and 350 licences are in operation.

Note: See appendix for some historical acquisitions and divestments
Source: Kontali Analyse
Salmon Production and Cost Structure
Salmon Production and Cost Structure

8.1 Establishing a salmon farm

The salmon farming production cycle is about 3 years. During the first year of production eggs are fertilised and fish are grown to approximately 100-150 grams in a controlled freshwater environment.

The fish are then transported to seawater cages where they are grown to around 4-5 kg over a period of 12-24 months. The growth of the fish is heavily dependent on seawater temperatures, which vary by time of year and across regions.

When they reach harvestable size, the fish are transported to processing plants where they are slaughtered and gutted. Most salmon is sold gutted on ice in a box (GWT).
8.2 The Atlantic salmon life/production cycle

Note: See appendix for more information on the Atlantic salmon production cycle
Source: Mowi
Salmon Production and Cost Structure

The total freshwater production cycle takes approximately 10-16 months and the seawater production cycle lasts around 12-24 months, giving a total cycle length of on average about 3 years. In Chile, the cycle is slightly shorter as the seawater temperatures are more optimal with fewer fluctuations.

In autumn, the broodstock are stripped for eggs and ova inlay takes place between November and March. The producer can speed up the growth of the juveniles with light manipulation which accelerates the smoltification process by up to 6 months.

In Norway, smolts are mainly released into seawater twice a year. Harvesting is spread evenly across the year, although most harvesting takes place in the last quarter of the year as this is the period of best growth. During summer the harvesting pattern shifts to a new generation, and consequently weight dispersion between large and small harvested salmon is greater at this time than for the rest of the year.

After a site is harvested, the location is fallowed for between 2 and 6 months before the next generation is put to sea at the same location. Smolts may be released in the same location with a two year cycle.
Seawater temperatures vary considerably throughout the year in all production regions. While the production countries in the northern hemisphere see low temperatures during the beginning of the year and high temperatures in autumn varying by as much as 10°C, the temperature in Chile is more stable varying between 10°C and 14°C. Chile has the highest average temperature of 12°C, while Ireland has 11°C and the four other regions have an average temperature of about 10°C.

As the salmon is a cold-blooded animal (ectotherm), water temperature plays an important role in its growth rate. The optimal temperature range for Atlantic salmon is 8-14°C, but they thrive well from 4-18°C. Temperature is one of the most important natural competitive advantages that Chile has compared to the other production regions as the production time there historically has been shorter by a few months.

With high seawater temperatures, risk of disease increases, and with temperatures below 0°C, mass mortality becomes more likely, both of which cause the growth rate to fall.

Source: Mowi
Note: Average temperature 2014-2019 for all regions except Canada East (2018-2019)
Salmon Production and Cost Structure

8.4 Production inputs

Eggs
There are several suppliers of eggs to the industry. Aquagen AS, Fanad Fisheries Ltd, Lakeland and Salmobreed AS are some of the most significant by quantity. In addition to these suppliers, Mowi produce its own eggs based on the Mowi strain. Egg suppliers can tailor their production to match demand by obtaining more or less fish for breeding during the preceding season. Production can easily be scaled. The market for salmon eggs is international.

Smolt
The majority of smolt are produced "in-house" by vertically integrated salmon farmers. This production is generally for a company’s own use, although a proportion may also be sold to third parties. A smolt is produced over a period of 6-12 months from fertilisation of an egg to a mature smolt weighing 100-250 grams. The post-smolt production (250-1,000 grams) has increased in recent years, accounting for 9% of the smolt release in 2018 in terms of individuals. The idea behind larger smolt is to shorten the time at sea, thus reducing exposure to sea lice, disease etc.
Salmon Production and Cost Structure

Labour
According to The Directorate of Fisheries the Norwegian aquaculture industry employed 7,578 people in 2016. A Nofima report stated that 15,000 people were employed in businesses involved in activities connected with the aquaculture industry in 2013. In total there are over 22,000 people employed full-time either directly or indirectly by the aquaculture industry in Norway.

According to the Scottish Salmon Producers Organisation (SSPO), almost 2,500 people are employed in salmon production in Scotland. The Scottish Government estimates that over 8,000 jobs are generated directly or indirectly by the aquaculture industry.

Estimates on Canadian employment say that around 14,000 people are employed in aquaculture, where Canada’s farmed-salmon industry provides more than 10,000 jobs. Direct employment in Chilean aquaculture (including processing) was estimated at around 30,000 people in 2014.

Mowi Group has a total of 14,537 employees in 25 countries worldwide (31 Dec 2018).

In Norway, salaries and levels of automation are highest in the Group, while the opposite is the case in Chile. Salaries in the UK and Canada are lower than in Norway.

Electricity
Electricity is mainly used in the earliest and last stages in the salmon’s life cycle. To produce a good quality smolt, production normally takes place in tanks on land where the water temperature is regulated and/or recirculated which requires energy (accounting for 4-5% of smolt cost in Norway). The cost of energy consumption will depend on the price of electricity and the temperature. A cold winter will demand more electricity to heat the water used in the smolt facility. The size of the smolt will also influence electricity consumption as a larger smolt has a longer production cycle in the smolt facility. More energy is consumed when the salmon is processed. However, this depends on the level of automation (2-3% of harvest cost in Norway).

Source: Mowi, Kontali Analyse, Directorate of Fisheries, SSPO, Government of Canada, Estudio Situación Laboral en la Industria del Salmón”, Silvia Leiva 2014
8.5 Cost component – disease and mortality

EBIT costs per kg decline with increasing harvest weight. If fish is harvested at a lower weight than optimal (caused by diseases for example), EBIT costs per kg will be higher.

During the production cycle, some mortality will occur. Under normal circumstances, the highest mortality rate will be observed during the first 1-2 months after the smolt is put into seawater, while subsequent stages of the production cycle normally have a lower mortality rate.

Elevated mortality in later months of the cycle is normally related to outbreaks of disease, treatment for sea lice or predator attacks.

There is no strict standard for how to account for mortality in the accounts, and there is no unified industry standard. Three alternative approaches are:
- Charge all mortality to expense when it is observed
- Capitalise all mortality (letting the surviving individuals carry the cost of dead individuals in the balance sheet when harvested)
- Only charge exceptional mortality to expense (mortality, which is higher than what is expected under normal circumstances)

It is not possible to perform biological production without any mortality. By capitalising the mortality cost, the cost of harvested fish will therefore reflect the total cost for the biomass that can be harvested from one production cycle.
Salmon Production and Cost Structure

8.6 Accounting principles for biological assets

Biological assets are measured at fair value less cost to sell, unless the fair value cannot be measured reliably.

Effective markets for the sale of live fish do not exist so the valuation of live fish implies establishment of an estimated fair value of the fish in a hypothetical market. Fair value is estimated by the use of a calculation model, where cash inflows are functions of estimated volume multiplied with estimated price. Fish ready for harvest (4 kg GWT, which corresponds to 4.8 kg LW) is valued at expected sales price with a deduction of costs related to harvest, transport etc. to arrive at back-to-farm prices. For fish not ready for harvest (i.e. below 4 kg GWT), the model uses an interpolation methodology where the known data points are i) the value of the fish when put to sea and ii) the estimated value of the fish when it has reached harvest size. The valuation reflects the expected quality grading and size distribution.

Broodstock and smolt are measured at cost less impairment losses, as fair value cannot be measured reliably.

The change in estimated fair value is recognised in profit or loss on a continuous basis and is classified separately (not included in the cost of the harvested biomass). On harvesting, the fair value adjustment is reversed on the same line.

Operational EBIT
Operational EBIT and other operational results are reported based on the realised costs of harvested volume and do not include fair value adjustments on biomass.
The salmon farming industry is capital intensive and volatile. This is a result of a long production cycle, a fragmented industry, market conditions and a biological production process which is affected by many external factors.

Over time, production costs have been reduced and productivity has increased as new technology and techniques have improved. In recent years, costs have trended upwards due to several factors including rising feed costs, biological costs and more stringent regulatory compliance procedures.

Reported revenues: Revenues are a gross figure; they can include invoiced freight from reference place (e.g. FCA Oslo) to customer, and have discounts, commissions and credits deducted. Reported revenues can also include revenues from trading activity, sales of by-products, insurance compensation, gain/loss on sale of assets etc.

Price: Reported prices are normally stated in the terms of a specific reference price e.g. the Nasdaq price for Norway (FCA Oslo) and UB price for Chile (FOB Miami). Reference prices do not reflect freight, and other sales reducing items mentioned above. Reference prices are for one specific product (Nasdaq price = sales price per kg head on gutted fish packed fresh in a standard box). Sales of other products (frozen products, fresh fillets and portions) will cause deviation in the achieved prices vs. reference price. Reference prices are for superior quality fish, while achieved prices are for a mix of qualities, including downgrades. Reference prices are spot prices, while most companies will have a mix of spot and contract sales in their portfolio.

Quantity: Reported quantity can take many forms. Quantity harvested = Fish harvested in a specific period in a standardized term; e.g. Gutted Weight Equivalent (GWT), which is the same weight measure as Head-on-Gutted (HOG), or Whole Fish Equivalent (WFE), the difference being gutting loss. Quantity sold can be reported using different weight scales:
- Kg sold in product weight.
- Kg sold converted to standard weight unit (GWT or WFE).
- Quantity sold could also include traded quantity.
Salmon Production and Cost Structure

8.8 Cost structure Norway 2009-2018

Feed: As in all animal production, feed makes up the largest share of the total cost. The variation in costs between countries is based on somewhat different inputs to the feed, logistics and the feed conversion ratio.

Smolt: Atlantic salmon smolt is largely produced at land-based hatcheries either in flow-through or RAS systems. Cost per kilo is increasing as farmers increase the size of the smolt in the hatchery before release to sea. The cost is expected to be offset by shorter time in sea, less lice treatment etc.

Labour Cost: Salmon production is a capital-intensive industry and labour cost accounts for a minor part of total costs. However, it has been increasing over the last years, partly because of increased employment in relation to lice issues.

Harvest/ Packing/ Wellboat: Costs relating to transportation of live fish, slaughtering, processing and packing are all heavily dependent on quantity, logistics and automation.

Depreciation: The industry is investing heavily in new technology and automation, but also in equipment used to treat lice, which in turn leads to higher depreciation costs.

Misc. operating costs: Other costs include direct and indirect costs, administration, insurance, biological costs (excluding mortality), etc.

9 Feed Production
Global production of manufactured feed was around 1,103 million tonnes in 2018. The majority was used for land-dwelling animals, where 88% was used in the farming of poultry, pig and ruminants. Only 4%, or 44 million tonnes, of global production of manufactured feed was used in aquatic farming.

Most aquatic feed produced globally is used for carp as this is the predominant fish species. Feed for salmonids only accounts for 10% of the total production of aquatic feed.

Source: Kontali Analyse
Atlantic salmon is the most farmed species of salmonids and is therefore the largest consumer of salmonid feed.

Most of the feed used in farming of salmonids is produced close to where it is farmed. Norway used 44% of the global feed directed towards the salmonid segment in 2018 and Chile used 31%.

Source: Kontali Analyse
The production of feed around the world varies as there are large deviations in sea temperature. Norway has the greatest seasonality in production. The low season is from February to April and the high season is from July to September, with the mid-season in between. Production in the low season can be as low as only 30% of the high season’s production. Feed is considered a perishable product with a shelf life of normally up to a maximum of one year. As the turnover of feed is usually high the shelf life is not considered an issue in large operations.

*Relative feeding: (Feed sold or fed during a month) / (Biomass per primo in month)
Source: Kontali Analyse
Feed Production

9.3 Salmon feed producers

During the last decade, the salmonid feed industry has become increasingly consolidated. Since 2008, three producers have controlled the majority of salmon feed output; Skretting (subsidiary of Nutreco which has been acquired by SHV), Ewos and BioMar (subsidiary of Schouw). The companies all operate globally.

In mid-2014, Mowi began production of feed from its first new feed plant. The plant produced 348,402 tonnes in 2018 compared to a global salmonid feed production of around 4 million tonnes. Mowi’s market share more than doubled between the end of 2014 and 2018. In 2019, Mowi completed its second feed plant located in Kyleakin, Scotland and has a capacity of 170,000 tonnes.

The major cost elements when producing salmonid feed are the raw materials required and production costs.

The feed producers have historically operated on cost-plus contracts, leaving the exposure of raw material prices with the aquaculture companies.
Feed Production

9.4 Salmon feed ingredients

Atlantic salmon feeds should provide proteins, energy and essential nutrients to ensure high muscle growth, energy metabolism and good health. Historically, the two most important ingredients in fish feed have been fish meal and fish oil. The use of these two marine raw materials in feed production has been reduced in favour of ingredients such as soy, sunflower, wheat, corn, beans, peas, poultry by-products (in Chile and Canada) and rapeseed oil. This substitution is mainly due to heavy constraints on the availability of fish meal and fish oil.

Atlantic salmon have specific nutrient requirements for amino acids, fatty acids, vitamins, minerals and other lipid- and water-soluble components. These essential nutrients can in principle be provided by the range of different raw materials listed above. Fish meal and other raw materials of animal origin have a more complete amino acid profile and generally have a higher protein concentration compared to proteins of vegetable origin. As long as a fish receives the amino acid it needs it will grow and be healthy and the composition of its muscle protein is the same irrespective of feed protein source. Consequently, feeding salmon with non-marine protein sources results in a net production of marine fish protein.

During the industry’s early phases, salmon feed was moist (high water content) with high levels of marine protein (60%) and low levels of fat/oil (10%). In the 1990s, feed typically consisted of 45% protein, made up mostly of marine protein. Today, the marine protein level is lower due to cost optimisation and the availability of fish meal. However, the most interesting development has been the increasingly higher inclusion of fat. This has been made possible through technological development and extruded feeds.

Source: www.nifes.no, Holtermann, Mowi
Feed Production

Feed and feeding strategies aim to grow a healthy fish fast at the lowest possible cost. Standard feeds are designed to give the lowest possible production cost rather than maximised growth. Premium diets formulated for the best growth rate are being used in situations where the difference between sales price and production cost make these diets profitable.

Feeding control systems are used at all farms to control and optimise feeding. Feeding is monitored for each net pen to ensure that fish are fed to maximise growth (measured by the Relative Growth Index - RGI). At the same time systems ensure that feeding is stopped immediately when the maximum feed intake has been provided to prevent feed waste. The fastest growing fish typically also have the best (i.e. lowest) feed conversion ratio (FCR).
Fish oil: Since 2009 fish oil prices have increased. The average price of fish oil was about USD 1,750 per tonne in 2018.

Fish meal: Fish meal has also seen an increasing price trend. On average, fish meal has historically been more expensive, but over the last couple of years fish oil has surpassed fish meal in price.

Rapeseed oil: Up until 2011, rapeseed oil and fish oil had correlated price development. However, in the last few years there has been a decreasing trend in the price of rapeseed oil.

Soy meal: Soy and corn have traditionally been very important vegetable protein sources in fish feed. As a consequence of demand from China increasing faster than the increase in soy production and more corn being used for energy purposes, the price of soy meal (and other vegetable proteins) has increased. Parallel to this, there has been an increase in production of genetically modified (GM) soy and corn. Non-GM products have been sold with a premium making them more expensive. The average price in 2018 was USD 554 per tonne.

Wheat: Prices for wheat have remained stable over the years with generally good production and balanced supply/demand.

Source: Holtermann
10 Financial Considerations
Financial Considerations

10.1 Working capital

The long production cycle of salmon requires significant working capital in the form of biomass.

Working capital investments are required for organic growth, as a larger “pipeline” of fish is needed to facilitate larger harvest volumes. On average, a net working capital investment of approximately EUR 3/kg is required, split between the year of harvest and the year immediately preceding harvest, to obtaining an increase in harvest volume of 1 kg. The working capital requirement has increased over time and fluctuates with variations in currency exchange rates.

Net working capital varies during the year. Growth of salmon is heavily impacted by changing seawater temperatures. Salmon grows at a higher pace during summer/autumn and more slowly during winter/spring when the water is colder. As the harvest pattern is relatively constant during the year, this leads to large seasonal variations in net working capital. For a global operator, net working capital normally peaks around year-end and bottoms around mid-summer.

Source: Mowi
Financial Considerations

Cost of building biomass

For illustration purposes, the farming process has been divided into three stages of 12 months. The first 12-month period is from production from egg to finished smolt. 24 months of on-growing in the sea follows this. When the on-growing phase ends, harvest takes place immediately (illustrated as “Month 37”). In a steady state there will always be three different generations at different stages in their life cycle. Capital expenditure is assumed equal to depreciation for illustration purposes. The working capital effects are shown above on a net basis excluding effects from accounts receivables and accounts payables.

By the point of harvest there have been up to 36 months of costs to produce the fish, comprising the cost of producing the smolt two years ago, further costs incurred to grow the fish in seawater, and some costs related to harvest ("Month 37"). Sales price covers these costs and provides a profit margin (represented by the green rectangle).

Cash cost for the period in which the fish is harvested is not large compared to sales income, creating a high net cash flow. If production going forward (next generations) follows the same pattern, most of the cash flow will be reinvested into salmon at various growth stages. If the company wishes to grow its future output, the following generations need to be larger requiring even more of the cash flow to be reinvested in working capital.

This is a rolling process and requires substantial amounts of working capital to be tied up, both when in a steady state and especially when increasing production.

Source: Mowi
Financial Considerations

The illustration above shows how capital requirements develop when production/biomass is being built “from scratch”. In phase 1, there is only one generation (G) of fish produced and the capital requirement is the production cost of the fish. In phase 2, the next generation is also put into production, while the on-growing of G1 continues, rapidly increasing the capital invested. In phase 3, G1 has reached its last stage, G2 is in its on-growing phase and G3 has begun to increase its cost base.

At the end of phase 3, the harvest starts for G1, reducing the capital tied-up, but the next generations are building up their cost base. If each generation is equally large and everything else is in a steady state, the capital requirement would have peaked at the end of phase 3. With a growing production, the capital requirement will also increase after phase 3 as long as the next generation is larger than the previous (if not, the capital base is reduced). We see that salmon farming is a capital-intensive industry.

To equip a grow-out facility you need cages (steel or plastic), moorings, nets, cameras, feed barge/automats and workboats.

Source: Mowi
Financial Considerations

10.2 Capital return analysis

Investments and payback time (Norway) - assumptions

- Normal site consisting of 4 licenses
- Equipment investment: MEUR 3.5 - 4.5
- Number of licenses: 4
- License cost (second hand market) MEUR: 60 (~MEUR 15 per license)
- Output per generation: ~4,000 tonnes GWT
- Number of smolt released: 1,100,000
- Smolt cost per unit: EUR 1
- Feed price per kg: EUR 1.3 (LW)
- Economic feed conversion ratio (FCR): 1.2 (to Live Weight)
- Conversion rate from Live Weight to GWT: 0.84
- Harvest and processing incl. well boat cost per kg (GWT): EUR 0.4
- Average harvest weight (GWT): 4.5kg
- Mortality in sea: 15%
- Sales price: EUR 5.7/kg

To increase capacity there are many regulations to fulfil.

In this model we focus on a new company entering the industry and have used only one site, for simplicity’s sake. Most companies use several sites concurrently, which enables economies of scale and makes the production more flexible and often less costly.

In this model smolts are bought externally, also in the interests of simplicity. Smolts are usually less costly to produce internally, but this depends on production quantity.

The performance of the fish is affected by numerous factors including feeding regime, seawater temperature, disease, oxygen level in water, smolt quality, etc.

The sales price reflects the average sales price from Norway over the last five years.

Source: Mowi, Kontali Analyse
Results
Because of the simplifications in the model and the low, non-optimal production regime, production costs are higher than the industry average. Due to high entry barriers in terms of capital needs, and falling production costs with increasing quantity, new companies in salmon production will experience higher average production costs. During the production of each generation the working capital needed at this farm, given the assumptions, would be peaking at around MEUR 12 (given that the whole of each generation is harvested at the same time).

With a sales price of EUR 5.7/kg the payback time for the original investments would be around 11.5 years. This result is very sensitive to sales price, licence cost and economic feed conversion ratio (FCR).

The sales price of EUR 5.7/kg is based on the average price in Norway in the 5-year period 2014-2018.

Source: Mowi
Financial Considerations

10.3 Currency overview

Norwegian exposure vs foreign currency

Exporters deal in the traded currency, while the customer has an exposure to both traded and local currencies. For example, a Russian processor trades salmon in USD, but sells its products in the local currency, roubles (RUB).

Most Norwegian producers are exposed to currency fluctuations as most of the salmon they produce is exported. Most of the salmon is exported to countries within the EU and is traded in EUR. The second largest traded currency is USD. Some players in countries in Eastern Europe, the Middle East and some Asian countries prefer to trade salmon in USD rather than in local currency.

The price of salmon quoted in traded currency will compete with other imported goods, while the price of salmon quoted in local currency will compete with the price to consumers of domestically produced products.

There is a currency risk involved in operating in different currencies, and therefore many of the largest industry players hedge currencies often with back-to-back contracts. The currency risk arising from salmon sales denominated in the traded currency is usually absorbed by the exporter, while the currency risk in local currency is absorbed by the customer.

Source: Kontali Analyse

Note: (1) The table shows exposure against local currency weighted against total export volumes.
Exposure against local currency – 2018(1)

Europe is the largest market for Norwegian produced salmon, so EUR is the predominant currency for Norwegian salmon producers. Russia is an important salmon market however, due to the trade sanctions against Russia, Norwegian exposure to RUB is limited. As a result of the sanctions, other markets have recently increased their direct exposure to RUB.

Key markets for Chilean produced salmon are the USA and Brazil, so exposure to USD and BRL (Brazilian real) in local currency terms is followed closely. Exposure to RUB has increased over the years as the Russian market has become more important for Chilean exporters.

Feed production: Currency exposure
The raw materials required to produce feed are as a rule of thumb quoted in USD (approx. 70%) and EUR (approx. 30%), based on long term average exchange rates. Raw materials generally account for 85% of the cost of producing feed. The remaining costs, including margin for the feed producer, are quoted in local currency.

Secondary Processing: Currency exposure
The biggest market for value added products is Europe, hence the vast majority of currency flows are EUR-denominated, both on the revenue and cost side. In the US and Asian processing markets currency flows are denominated largely in USD and EUR on the revenue side whilst costs are denominated in USD, EUR and local currency.

Source: Kontali
Note:(1) The table shows exposure against local currency weighted against total export volumes
Financial Considerations

10.4 Price, cost and EBIT development in Norway

The upward trending salmon price from 2009-2018 was caused by supply growth being lower than the structural growth in demand. In 2016, an algae bloom in Chile wiped out 100,000 tonnes and at the same time Norway experienced biological challenges which led to high mortality, early harvest and shortage of large fish, which reduced the global supply.

In the last decade product innovation, category management, long-term supply contracts, effective logistics and transportation has stimulated strong demand growth for salmon, in particular in European markets. In recent years, costs have trended upwards due to several factors including rising feed costs, biological costs and more stringent regulatory compliance procedures. The average EBIT per kg for the Norwegian industry has been positive with the exception of a few shorter periods. The last 10 years it has been EUR 1.4 per kg in nominal terms (EUR 1.8 per kg the last 5 years).

Source: Kontali Analyse, Norges Bank
The illustration above depicts Mowi’s performance across different countries over the last 5 years. In all regions, the biological risk is high, and this impacts cost significantly from period to period. The variance in EBIT per kg is high, however, the geographic specific risk can be diversified with production across regions.
11 Barriers to Entry – Licences
Barriers to Entry – Licences

Due to biological constraints, seawater temperature requirements and other natural constraints, farmed salmon is only produced in Norway, Chile, Scotland, the Faroe Islands, Ireland, Iceland, Canada, USA, Tasmania and New Zealand.

Atlantic salmon farming began on an experimental level in the 1960s and evolved into an industry in Norway in the 1980s and in Chile in the 1990s.

In all salmon-producing regions, the relevant authorities have a licensing regime in place. In order to operate a salmon farm, a licence is the key prerequisite. Such licences restrict the maximum production for each company and the industry as a whole. The licence regime varies across jurisdictions.
Barriers to Entry – Licences

11.1 Regulation of fish farming in Norway

Licence and location
Fish farming companies in Norway are subject to a large number of regulations. The Aquaculture Act (17 June 2005) and the Food Safety Act (19 December 2003) are the two most important laws, and there are detailed provisions set out in the various regulations which emanated from them.

In Norway, a salmon-farming licence allows salmon farming either in freshwater (smolt/fingerling production) or in the sea. The number of licences for Atlantic salmon and trout in seawater was limited to 1,041 in 2018. Such limitations do not apply for freshwater licences (smolt production), which can be applied for at any time. Seawater licences in can use up to four farming sites (six sites are allowed when all sites are connected with the same licence). This increases the capacity and efficiency of the sites.

New seawater licences are awarded by the Norwegian Ministry of Trade, Industry and Fisheries and are administered by the Directorate of Fisheries. Licences can be sold and pledged, and legal security is registered in the Aquaculture Register. Since 1982, new licences have been awarded only in certain years.

Production limitations in Norway are regulated as “maximum allowed biomass” (MAB), which is the defined maximum volume of fish a company can hold at sea at all times. In general, one licence sets a MAB of 780 tonnes (945 tonnes in the counties of Troms and Finnmark). The sum of the MAB permitted by all the licences held in each region is the farming company’s total allowed biomass in this region. In addition, each production site has its own MAB and the total amount of fish at each site must be less than this set limit. Generally, sites have a MAB of between 2,340 and 4,680 tonnes.

The Norwegian coast is divided into 13 geographical areas of production. The level of sea lice in these areas decide if the MAB can increase (6%), stay the same or decrease (6%) in these areas. Every second year the government announces the conditions for growth on existing and new licences. In 2018 companies in “green” areas were offered a 2% growth on existing licences. The additional 4% growth was part of an open auction.

Sites complying with very strict environmental standards are offered additional growth. The conditions for this growth are A) below 0.1 lice per fish at every counting for the past two years in the period April 1st to September 30th and B) a maximum of one treatment during the last cycle of production. For sites meeting this standard a maximum of 6% growth is offered, regardless of the general situation in the different production areas.

In “red” areas, companies will need to reduce production with 6%. The government is still working on the regulatory details on potential reduction in “red” areas.

In autumn 2019 the government will decide the status of the different 13 areas, based on expert recommendations.

There is an ongoing debate in Norway regarding new taxes aimed at the salmon farming industry. Last year, the Ministry of Finance decided to establish a committee to consider imposing a resource rent tax for the industry. Their recommendation will be public during 2019. So far, several political parties have rejected the proposed new tax, and it is not likely that the Government will impose such a fee, independent of the recommendation from the independent committee.
Barriers to Entry – Licences

Access to Licences

Until November 2015, a company had to apply for approval from the government if it got control of more than 15% of the total licenced biomass in Norway. Such approval could be given if specific terms regarding the applicant’s R&D activity, fish processing and apprenticeships in coastal regions were met. This act on ownership limitation was removed in November 2015.

The figure below depicts an example of the regulatory framework in Norway for one company:

• Number of licences for a defined area: 5
 - Biomass threshold per licence: 780 tonnes live weight (LW)
 - Maximum biomass at any time: 3,900 tonnes (LW)
• Number of sites allocated is 3 (each with a specific biomass cap)
 In order to optimise the production and harvest quantity over the generations of salmon, the licence holder can operate within the threshold of the three sites as long as the total biomass in sea never exceeds 3,900 tonnes (LW).
• There are also biomass limitations on the individual production sites. The biomass limitation varies from site to site and is determined by the carrying capacity of the site.
Barriers to Entry – Licences

Average harvest per standard license 2018

The graph above shows the harvest per licence in 2018 for the Norwegian industry as a whole and for the largest listed companies. The graph is organized by highest harvest quantity.

Please note that one standard licence equates to 945 tonnes MAB in Troms and Finnmark, but 780 tonnes in the rest of the country. Because of this, companies in the North will have a higher utilization per standard licence.

Because of the regulation of standing biomass (maximum allowed biomass - MAB) per licence (780 tonnes LW), the production capacity per licence is limited. Annual harvest quantity per licence in Norway is currently at 1,031 tonnes GWT. Larger companies typically have better flexibility to maximise output per licence which means that the average harvest figure for the industry as a whole is normally lower than the figure for the largest companies.

Number of grow-out seawater licences for salmon and trout in Norway:
2007: 929
2008: 916
2009: 988
2010: 991
2011: 990
2012: 963
2013: 959
2014: 973
2015: 974
2016: 990
2017: 1,015
2018: 1,041

Source: Mowi, Kontali Analyse, Directorate of Fisheries
Maximum allowed biomass by the end of 2018 was 908,518 tonnes of Atlantic salmon and trout. MAB-utilization is normally at its highest in October-November, because rate of growth is higher than rate of harvest during the summer. It is at its lowest in April-May due to low growth during the cold winter months. Average utilization of the MAB was 85% in 2018E, up from 84% in 2017.
Barriers to Entry – Licences

Closed production in sea
In November 2015 the Norwegian government announced a new category of licence. Development licences are intended to motivate investment into new farming technologies. Development licences are allocated free of charge for up to 15 years. After that, if the project is carried out in line with the set criteria, the licences may be converted into commercial licences at a cost of NOK 10 million.

By the deadline for applications, 104 concept applications had been submitted, out of which 19 have now been approved and 85 denied. The concepts mainly vary in their exposure to the sea; having open or closed structure, and being submerged or unsubmerged solutions.

Mowi applied for a total of 70 licences for five different projects, including three different systems for closed production in sea. The Norwegian Directorate of Fisheries decided that “The Egg” and “Marine Donut” concepts qualified for the development licence scheme. “The Egg” was awarded 6 licences in March 2018 and the “Marine Donut” was awarded 2 licences. The Egg (A) is 44 metres high and 33 metres in diameter, and 90% of the structure will be underwater. The Marine Donut (B) has a volume of 22,000 m3 with high circulation.

The “Back Cage” and “Aqua Storm” concepts have been appealed to the Ministry of Fisheries, and the “Ship” has been rejected by the Ministry of Fisheries.

Source: Directorate of Fisheries
Barriers to Entry – Licences

11.2 Regulation of fish farming in Scotland

Licences and location
In Scotland, instead of a formal licence, permissions are required from four organisations before setting up a fish farming site; Planning Permission from the local Planning Authority, a Marine licence from Marine Scotland; an environmental licence from the Scottish Environment Protection Agency (SEPA) and an Aquaculture Production Business authorisation, also from Marine Scotland. The Maximum Allowed Biomass (MAB) for individual sites is determined based on an assessment of environmental concerns, including the carrying capacity of the local marine environment to be able to accommodate the fish farm. As a consequence, MAB for salmon farms is not uniform and varies; at present up to a maximum of 2,500 tonnes depending on site characteristics and geographic location. The availability of improved environmental modelling tools and a proposed revision to SEPA’s regulatory framework during 2019 will now allow licences to be issued for MAB > 2,500 tonnes.

The Crown Estate owns and manages most of the seabed around the UK out to a distance of 12 nautical miles. Anyone who develops or operates in UK territorial waters is doing so on Crown Estate property. Because of this, you have to apply for a lease from The Crown Estate and pay rent to install and operate your farm on the seabed. Most existing licences are automatically renewed at the end of their lease period. A Crown Estate lease is generally granted for a period of 25-year period and is dependent on securing Planning Permission.

The environmental licence from SEPA can be reviewed and MAB reduced in the event of non-compliance with environmental standards and potentially revoked in cases of significant and long-term non-compliance.

New site applications can take 6 months for planning permission to be granted with the determination period for applications for the environmental licence being 4 months however both can take longer. Expansion of existing facilities is the most efficient route in terms of cost and time; new sites will take a greater amount of time and will be subject to an Environmental Impact Assessment (EIA) in order to secure planning permission.

The environmental licence is charged annually, calculated according to 3 elements; activity and environmental components, and a compliance factor. The annual charge can in some cases be >15,000 GBP. Standing rent is levied by the Crown Estate on the basis of production levels: GBP 27.50 per tonne harvested for Mainland sites; GBP 24.75 per tonne for Western Isles sites; GBP 1,000 annual charge if a site is not in production for 4 consecutive years followed by a GBP 2,000 annual charge if the site is dormant for a further 2 years. A 100% increase to the dormancy charge then applies every second year a site remains inactive to encourage the use of dormant sites. Planning permission applications are also charged at GBP 183 per 0.1 hectare of farm surface area and GBP 63 per 0.1 hectare of sea bed while the SEPA licence application fee is GBP 4,202 for a new site.
Barriers to Entry – Licences

11.3 Regulation of fish farming in Ireland

Aquaculture in Ireland is licenced by The Minister for Agriculture, Food and the Marine, (MAFM) under the Fisheries (Amendment) Act, 1997 and its associated Regulations which have been amended to give effect to various EU environment protection Directives. The licensing process is complex.

The Aquaculture and Foreshore Management Division, (AFMD) of the Department manages the processing of aquaculture licences on behalf of the Minister. The Marine Engineering Division (MED) of the Department undertakes site mapping and provides certain technical advice on applications as well as undertaking certain post-licensing inspection duties. The Marine Institute (MI) provides scientific advice on a range of marine environment and aquaculture matters and in the case of applications which require Appropriate Assessment (AA) under EU Birds and Habitats Directives. Advice is also provided by Bord Iascaigh Mhara (BIM) and the Sea Fisheries Protection Authority (SFPA). The National Parks and Wildlife Services (NPWS) are consulted in relation to habitat protection. Inland Fisheries Ireland (IFI), An Taisce and the Commissioners of Irish Lights (CIL) are also consulted. Where relevant, the Local Authority and/or Harbour Authority are consulted. Land based fin fish units also require planning consent from the local authority. All applications are released for public consultation and comment.

An Environmental Impact Assessment (EIA) is mandatory for marine finfish applications and applicants are required to submit an EIS with their initial applications. The obligation to carry out an Appropriate Assessment (AA) applies if the application is within a Natura 2000 site or likely to impact on a Natura 2000 site. Decisions of the Minister in respect of aquaculture licence applications, including licence conditions, may be appealed to the Aquaculture Licences Appeals Board (ALAB). ALAB can confirm, refuse or vary a decision made by the Minister or issue licences itself under its own authority.

Licences are typically issued for 10 years. The 1997 Act provides for licence duration of up to 20 years. Foreshore (seabed) leases and licences are companion consents to Aquaculture Licences. Foreshore Acts allow for leases and licences to be granted for terms not exceeding ninety-nine years, respectively. Terms of current licences vary between harvest output (tons) per annum, smolt number input, maximum number of fish on site or a combination of these. Prior to expiry of a licence, an application for renewal of the licence must be made.

Currently the processing of a marine fin fish licence takes between 87 and 216 weeks. Most licences will be appealed to ALAB which can take at least a further 168 weeks to determine. The process of renewing expired fin fish licences takes as long as a new application.

In 2017, the Minister for Agriculture, Food and Marine initiated an independent review of the Aquaculture licencing system in Ireland. The report of this review was published in May 2017 with the overarching conclusion, that a root-and-branch reform of the aquaculture licence application processes is necessary which encompasses a further 30 recommendations.

Annual fin fish culture licence fees for a marine based fin fish site are €6.35 per tonne for the first 100 tonnes plus €6.35 for each additional tonne. Foreshore rental fees are charged at €63.49 for up to and including 5 hectares of foreshore with each additional hectare up to 10 ha at €31.74 and each additional hectare >10 and up to 20 at €63.49. Annual culture licence fee for a land-based site is €127.97 per annum.
Barriers to Entry – Licences

11.4 Regulation of fish farming in Chile

Licence and location
In Chile licensing is based on two authorisations. The first authorisation is required to operate an aquaculture facility and specifies certain technical requirements. It is issued by the Undersecretaries of Fisheries and Aquaculture (under the Ministry of Economy). The second authorisation relates to the physical area which may be operated (or permission to use national sea areas for aquaculture production). This is issued by the Undersecretaries of Fisheries for Armed Forces (Ministry of Defence). The use of the licence is restricted to a specific geographic area, to defined species, and to a specified limit of production or stocking density. The production and stocking density limits are specified in Environmental and Sanitary Resolutions for the issued licence. Under certain conditions, owners can chose to reduce their whole stocking, producing at maximum density (17kg/m3 for Atlantic salmon), or to maintain or increase their stocking, using a limited density (form 4 to 17 kg/m3 for Atlantic salmon) determinate by productive, sanitary and environmental conditions of each neighbourhood, any increase over previous stocking numbers means going to 4 kg/m3. Owners can choose only one alternative to stock each semester.

Access to Licences
The trading of licences in Chile is regulated by the General Law of Fisheries and Aquaculture (LGPA) and controlled by the Undersecretaries of Fisheries and Aquaculture of the Ministry of Economy. Aquaculture activities are subject to different governmental authorisations depending on whether they are developed in private fresh water inland facilities (i.e. hatcheries) or in facilities built on public assets such as lakes or rivers (freshwater licences) or at sea (seawater licences).

To operate a private freshwater aquaculture facility requires ownership of the water-use rights and holding of environmental permits. Environmental permits are issued when operators demonstrate that their facilities comply with the applicable environmental regulations.

Licences for aquaculture activities in public assets are granted based on an application, which must contain a description of the proposed operations, including a plan for complying with environmental and other applicable regulations. Licences granted after April 2010 are granted for 25 years and are renewable for additional 25-year terms. Licences granted before April 2010 were granted for indefinite periods. Licence holders must begin operation within one year of receiving a licence and once the operation has started, the licence holder cannot stop or suspend production for a period exceeding two consecutive years. Subject to certain exceptions, licence holders must maintain minimum operational levels of not less than 5% of the yearly production specified in the RCA (Environmental Qualification Resolution). Until August 2016, all licences not used could be kept by the holder if they prepared an official Sanitary Management Plan.

Licence holders must pay annual licence fees to the Chilean government and may sell or rent their licences. For the moment, no new licences will be granted in the most concentrated regions, Regions X, XI, and XII (Chile is made up of 16 administrative regions).
Barriers to Entry – Licences

11.5 Regulation of fish farming in Canada

Licence and location

Fish farming companies in Canada are subject to different regulations depending on the geographical area they operate in. The Federal Fisheries Act, Navigation Protection Act, Health of Animals Act and the National Aquaculture Activities Regulation (AAR) are some of them. The three geographical areas with fish farming are British Columbia, Newfoundland, and New Brunswick.

To operate a marine fish farm site, provincial and/or federal authorisations are required. In Newfoundland and New Brunswick, the Provincial government is the primary regulator and leasing authority. The Province regulates the activity and operations of aquaculture and issues the Aquaculture Licence and Crown Land lease where fish farms are located. In British Columbia both Federal and Provincial authorisations are required. The Federal Government regulates the activity and operations of aquaculture while the Provincial Government administers the Crown lands where fish farms are located. Individual site tenures have a specific timeline, varying between the different geographical areas and the provincial policy. In British Columbia, the timeline typically ranges from five to twenty years. In Newfoundland, the Crown Land Lease for the site is issued for 50 years and the aquaculture Licence is issued for 6 years. In New Brunswick, individual sites are typically granted for 20 years. All Commercial Aquaculture Licences are renewable but may be lost or suspended for non-compliance issues and non-payment of fees.

The production limitations in Canada are regulated as either a “Maximum Allowable Biomass” or a fixed number of smolt per cycle. “MAB” is specific to each Aquaculture licenced facility in British Columbia. Smaller farms are typically licenced for 2,200mt. with larger capacity facilities licenced to produce 5,000 mt. per cycle. In Newfoundland and New Brunswick, a maximum number of smolt per cycle is given to a farm. Farms are typically licenced for 600,000 to 1,000,000 smolt per cycle in Newfoundland, and 270,000 to 350,000 smolt per cycle in New Brunswick.
Barriers to Entry – Licences

Access to Licences
In British Columbia, all permits and licences require consultation with First Nations and local stakeholders. The time taken to acquire licences for a new farm can vary from one to several years. Recently the Provincial government instituted a moratorium on new site applications. However, they have allowed existing sites to amend their tenure size and infrastructure if specific conditions apply. Companies can still obtain new tenures by relocating existing tenures to locations “more suitable for safety or matters of public interest.”

In Newfoundland, proponents must submit a sea cage licence application to the Newfoundland Department of Fisheries and Land Resources for each new or acquired marine site. In New Brunswick, companies must submit an Aquaculture licence Application for Marine Sites to the Department of Agriculture, Aquaculture and Fisheries (New Brunswick). It takes about nine months to transition an existing site to a new owner, and approximately one year for a new application in both places. This includes obtaining all necessary approvals and licences, and a review from The Department of Fisheries and Oceans (Federal). Consultation with residents, towns, development groups and commercial/recreational fishermen is required. In Newfoundland, all new sites of the same company must be 1 km apart, 5 km if sites are operated by different companies.

In Newfoundland, Provincial approvals can be assigned to a different operator through a government sub-lease assignment process, however, licences are not transferable. A company may transfer licences to another company providing the rationales for the assignment are supported by the government processes in New Brunswick.
Barriers to Entry – Licences

11.6 Regulation of fish farming in the Faroe Islands

Licence and location
Fish farming companies in the Faroe Islands are subject to extensive regulation. The most important legislative instruments are the Aquaculture Act (Act No. 83 from 25 May 2009 with latest amendments from 2018), the Environmental Act (Act No. 134 from 29 October 1988 with latest amendments from 2008) and the Food Safety Act (Act No. 58 from 26 May 2010 with latest amendments from 2017).

In addition to the above-mentioned acts, several Executive Orders with more detailed provisions covering fish farming have been issued under the provisions of the acts.

The right according to a specific licence is provided for a specific geographic area and with a limit of production specified in the individual licence. Production and stocking density limit is specified in an Environmental and Sanitary Resolution issued for each specific licence. The density limit may depend on production conditions as well as sanitary and environmental conditions.

The size of the area and density limits etc. for each of the 22 sea licences vary greatly. Production limitations in the Faroes are not regulated through limits on "maximum allowed biomass", MAB. As a consequence, MAB for salmon farms varies between 1,200 tonnes and 5,800 tonnes a year per licence, depending on site characteristics and the geographic location of the individual farm.

In 2012 and 2018 the Government of the Faroe Islands announced revised aquaculture regulations with the aim of securing sustainable growth in the industry and in order to implement anti-trust regulations.

Mowi Faroes is first and foremost affected by the anti-trust regulations in the Aquaculture Act. These rules set a cap of 20% for either direct or indirect foreign ownership in Faroese fish farming companies. If the limit is exceeded with regard to a fish farming company, the company must adjust its ownership to be within the limit within a short deadline set by the authorities or face possible loss of the right to conduct fish farming activities.

Mowi Faroes is 100% owned by Mowi ASA (NO). This ownership is protected by transitional provisions in the Aquaculture Act, securing that the company can remain owned by a foreign company and nonetheless keep its licences. The consequence for Mowi Faroes of the Anti-trust regulations is that the company cannot expand its business with additional commercial licences to farm fish in the sea. Mowi Faroes can however apply for development licences and licences on land.

It is stipulated in the Aquaculture Act that a fish farming company cannot hold more than 50% of the total sea licences. The new restrictions do not apply to licences held by each individual company today, but the new regulations specify that Mowi Faroes can keep its 3 seawater licences and 1 smolt licence, even though the company does not comply with the new cap on foreign-held capital.
Access to Licences
In order to conduct fish farming activities in the Faroe Islands, the fish farming company must obtain authorisation from Heilsufraðiliga Starvsstovan (The Faroese Food and Veterinary Authority) to operate an aquaculture facility. The authorisation specifies certain technical requirements with regard to conducting fish farming activities.

Fish farming companies with the above mentioned authorisation can apply for licences to conduct fish farming activities from the Ministry of Foreign Affairs and Trade. New sea licences can be awarded by the Ministry of Foreign Affairs and Trade. There is today a limit of 22 commercial seawater licences and no limit for licences on land. If new licences are to be awarded, they may be awarded through auction.

An application for a seawater licence must contain a description of the proposed operations, including a plan for complying with environmental and other applicable regulations.

The government of the Faroe Islands in April 2018 announced a new category of licences, i.e. development licences. Development licences are intended to motivate investment in new fish farming technologies. Due to the anti-trust regulations, Mowi Faroes can only obtain development licences, as the limits regarding foreign ownership do not apply to such licences.

Licences are granted for 12 years and are renewable for additional 12-year term. Licence holders must pay an annual fee of DKK 12,000 for each individual licence. Fish farming companies must also pay a harvesting fee based on the harvesting of farmed fish. The fee is based on the weight of gutted fish harvested in a month, multiplied by the average international market price in the same month.

Licences can be sold and pledged, and legal security is perfected by registration with the Land Registry. Licences may be withdrawn in cases of material breach of conditions set out in the individual licence or in the aquaculture or environmental legislation.
12 Risk Factors
Risk Factors

12.1 Salmon disease prevention and treatment

Maximising survival and maintaining healthy fish stocks are primarily achieved through good husbandry and health management practices and policies, which reduce exposure to pathogens and the risk of health challenges. The success of good health management practices has been demonstrated on many occasions and has contributed to an overall improvement in the survival of farmed salmonids.

Fish health management plans, veterinary health plans, biosecurity plans, risk mitigation plans, contingency plans, disinfection procedures, surveillance schemes as well as coordinated and synchronised zone/area management approaches, all support healthy stocks with emphasis on disease prevention.

Prevention of many diseases is achieved through vaccination at an early stage and while the salmon are in freshwater. Vaccines are widely used commercially to reduce the risk of health challenges. With the introduction of vaccines a considerable number of bacterial and viral health issues have been effectively controlled, with the additional benefit that the quantity of medicine prescribed in the industry has been reduced.

In some instances medicinal treatment is still required to maximize survival rates and for the well-being and welfare of the fish. Even the best managed farms may have to use medicines from time to time. For several viral diseases, no effective vaccines are currently available.
Risk Factors

12.2 Most important health risks to salmon

Sea lice: There are several species of sea lice, which are naturally occurring seawater parasites. They can infect the salmon skin and if not controlled they can cause lesions and secondary infection. Sea lice are controlled through good husbandry and management practices, the use of lice prevention barriers (e.g. skirts), cleaner fish (different wrasse species and lumpsuckers, which eat the lice off the salmon), mechanical removal systems and when necessary licenced medicines.

Cardiomyopathy syndrome (CMS): CMS is a chronic disease that can develop over several months and is caused by the piscine myocarditis virus (PMCV). Mortality typically occurs in large seawater fish. A typical clinical outbreak can last one to six months. Control is achieved mainly by good husbandry and management practices and keep the fish in conditions that satisfy their biological needs for food, clean water, space and habitat.

Pancreas Disease (PD): PD is caused by the Salmonid Alphavirus and is present in Europe. It is a contagious virus that can cause reduced appetite, muscle and pancreas lesions, lethargy, and if not appropriately managed, elevated mortality. PD affects Atlantic salmon and rainbow trout in seawater and is controlled mainly by management and mitigation practices. Vaccination is also used in combination with these measures where PD represents a risk, providing some additional level of protection. In addition, selective breeding for PD-resistant fish has also contributed to reducing the incidence of PD.

Salmonid Rickettsial Septicaemia (SRS): SRS is caused by intracellular bacteria. It occurs mainly in Chile but has also been observed, albeit to a much lesser extent, in Norway, Ireland, Canada and the UK. It causes lethargy and appetite loss, and can result in elevated mortality. SRS is to some extent controlled by vaccination, but medicinal intervention may also be required.

Heart and Skeletal Muscle Inflammation (HSMI): HSMI is currently reported in Norway and to a lesser extent Scotland. Symptoms of HSMI are reduced appetite, abnormal behaviour and in most cases low mortality. HSMI generally affects fish in their first year in seawater and control is achieved mainly by good husbandry and management practices.

Infectious Salmon Anaemia (ISA): ISA is caused by the ISA virus and is widely reported. It is a contagious disease that causes lethargy and anaemia and may lead to significant mortality in seawater if not appropriately managed. Control of an ISA outbreak is achieved through culling or harvesting of affected fish in addition to other biosecurity and mitigation measures. Vaccines are available and are in use in areas where ISA is considered to represent a risk.

Gill Disease (GD): GD is a general term used to describe gill conditions occurring in seawater. The changes may be caused by different infectious agents; amoeba, virus or bacteria, as well as environmental factors including algae or jellyfish blooms. Little is known about the cause of many of the gill conditions and to what extent infectious or environmental factors are primary or secondary causes of disease.
Risk Factors

12.3 Fish health and vaccination (Norway)

Production and use of antibiotics in Norway

The incidence of bacterial disease outbreaks increased in the 1980s. In the absence of effective vaccines, the use of antibiotics reached a maximum of almost 50 tonnes in 1987. Following the introduction of effective vaccines against the main health challenges of the time, the quantity of antibiotics used in the industry declined significantly to less than 1.4 tonnes by 1994 and has since then continued to be very low. These developments, along with the introduction of more strict biosecurity and health management strategies, allowed for further expansion of the industry and an increase in production.

During the last two decades there has been a general stabilisation of mortality in Norway, Scotland and Canada, which has been achieved principally through good husbandry, good management practices and vaccination. The trend in Chile in recent years stems from infection pressure from SRS in the industry.

Source: Kontali Analyse, Norsk medisinaldepot, Norwegian Institute of Public Health
12.4 Research and development focus

Fish Welfare and Robustness
- Development of better solutions for prevention and control of infectious diseases
- Minimization of production-related disorders
- Optimisation of smolt quality

Product Quality and Safety
- Continuously develop better technological solutions for optimised processing, packaging and storage of products, while maintaining consistently high quality.

New Growth
- Development of methods to reduce production time at sea
- Production in exposed areas
- Production in closed sea-going units

Production Efficiency
- Development of cost effective, sustainable and healthy salmon diets which ensure production of robust fish
- Identify the best harvesting methods, fillet yield optimisation and the most efficient transport and packaging solutions
- Net solutions and antifouling strategies
- Development of AI-based tools for value chain optimisation and boosting seawater-phase production efficiency

Footprint
- Develop, validate and implement novel methods for sea lice control
- Reduce dependency on medicines and limit the discharge of medicinal residues
- Escape management and control
- ASC implementation; R&D projects that will facilitate and make ASC implementation more efficient

According to Zacco (Norwegian patenting office), the rate of patenting in the salmon farming industry has grown rapidly in the last two decades. Considerable R&D is undertaken in several areas and the most important developments have been seen in the feed, sea lice control and vaccine sectors, carried out by large global players. In this industry most producers are small and do not have the capital to undertake and supervise major R&D activities. This is expected to change as consolidation of the industry continues.

Smolt, on-growing production and processing
The technology used in these phases can be bought “off the shelf” and very few patents are granted. Technology and producers are becoming increasingly more advanced and skilled.
13 Indicators Determining Harvest volumes
Indicators Determining Harvest volumes

13.1 Projecting future harvest volumes

The three most important indicators for future harvest volumes are standing biomass, feed sales and smolt release. These are good indicators for medium- and long-term harvest, while the best short-term indicator is standing biomass categorized by size. As harvested size is normally above 4 kg, the available biomass this size class is therefore the best estimate of short-term supply.

If no actual numbers on smolt releases are available, vaccine sales could be a good indicator of number of smolt releases and when the smolt is put to sea. This is a good indicator of long-term harvest volumes as it takes up to 2 years smolt release to harvest.

Variation in seawater temperature can materially impact the length of the production cycle. A warmer winter can for example increase harvest volumes for the relevant year, partly at the expense of the subsequent year.

Disease outbreaks can also impact harvest volume due to mortality and growth slowdown.
Indicators Determining Harvest volumes

13.2 Yield per smolt

Yield per smolt is an important indicator of production efficiency. Due to the falling cost curve and the discounted price of small fish, the economic optimal harvest weight is in the area of 4-5 kg (GWT). The number of harvested kilograms yielded from each smolt is impacted by diseases, mortality, temperatures, growth attributes and commercial decisions.

The average yield per smolt in Norway is estimated at 3.52 kg (GWT) for the 17 Generation.

Since 2010, the Chilean salmon industry has been rebuilding its biomass after the depletion caused by the ISA crisis which began in 2007. In 2010/11, the Chilean salmon industry performed well on fish harvested, due to the low density of production (improved yield per smolt). In line with increased density in subsequent years, biological indicators deteriorated. In 2016, an algae bloom caused high mortality, and the Chilean salmon industry started to rebuild its biomass once again. Recently, the yield per smolt has improved in Chile, and the average for 17G is estimated at 4.16 kg (GWT).

Average yield in the UK, North America and Faroe Islands for 17G is estimated at 2.92kg, 3.65kg and 4.21kg, respectively.

Source: Kontali Analyse, Mowi
Due to variations in seawater temperature during the year, the total standing biomass in Europe has a S-curve, which is at its lowest in May and at its peak in October. The Norwegian industry is focused on minimising natural fluctuations as licence constraints put a limit to how much biomass can be in sea at the peak of the year.

In Chile the situation is different due to more stable seawater temperatures and opposite seasons (being in the Southern hemisphere). A more consistent water temperature allows for smolt release throughout the year and enables more uniform utilisation of facilities. The relatively low standing biomass in Chile from March 2016 is due to the impact of an algae bloom.
14 Secondary Processing (VAP)
Secondary Processing (VAP)

In processing we distinguish between primary and secondary processing.

Primary processing is slaughtering and gutting. This is the point in the value chain at which standard price indexes for farmed salmon are set.

Secondary processing is filleting, fillet trimming, portioning, producing different cuts like cutlets, smoking, making ready meals or Packing with Modified Atmosphere (MAP).

Products that have been secondary processed are called value-added products (VAP).
14.1 European value-added processing (VAP) industry

- A total value of > EUR 25 billion
- Employees > 135,000
- Extremely fragmented – more than 4,000 companies
- About 50% of all companies have fewer than 20 employees
- Traditionally EBIT-margins have been between 2% and 5%
- The average company employs 33 people and has a turnover of EUR 4.2 million

The seafood industry in Europe is fragmented with more than 4,000 players. Most of the companies are fairly small, but there are also several companies of significant size involved in the secondary processing industry: Mowi, Icelandic Group, Deutsche See, Caladero, Royal Greenland, Labeyrie, and Lerøy Seafood.

Most of the largest players base their processing on Atlantic salmon, producing smoked salmon, salmon portions or ready meals with different packing techniques such as vacuum or modified atmosphere (MAP).

Consumers are willing to pay for quality and value added. This means that we expect to see an increase in demand for convenience products such as ready-to-cook fish, together with a packing trend towards MAP as this maintains the freshness of the product longer for than fish sold in bulk.
In the EU, around 70% of Atlantic salmon supply went to retailers while the remainder was sold to food service establishments. Approximately 70% was sold fresh. Of the different products, fillets had the largest market share of 45% followed by smoked. “Other VAP” consists of all value-added processed products, except smoked salmon.

Source: Kontali Analyse
Note: Horeca = Hotel, restaurants and café (or establishments which prepare and serve food and beverages)
Secondary Processing (VAP)

14.3 The European market for smoked salmon

Est. % share of smoked salmon market - EU 2018E

Smoked salmon is the most common secondary-processed product based on Atlantic salmon. The European market for smoked salmon was estimated to be 263,000 tonnes GWT in 2018, with Germany and France the largest markets. Assuming 50% yield from gutted weight to product weight, the European market consumed 131,500 tonnes product weight of smoked salmon in 2018.

European smoked salmon producers (2018E)
The ten largest producers of smoked salmon in Europe are estimated to have a joint market share of more than 60%. The production is mainly carried out in Poland, France, the UK, the Baltic states and the Netherlands.

Mowi produces its smoked salmon in Poland (Ustka), UK (Rosyth), France (Kritsen) Belgium (Oostende) and Turkey (Istanbul), and its main markets are Germany, France, Italy and Belgium. After the acquisition of Morpol in 2013, Mowi became the largest producer of smoked salmon. Labeyrie is the second largest and sells most of its products to France, and has also significant sales to the UK, Spain, Italy and Belgium.

Source: Kontali Analyse
Appendix
Appendix

| Atlantic salmon |
|-----------------|-----------------|
| Live fish | 100% |
| Loss of blood/starving | 7% |
| Harvest weight / Round bled fish (wfe) | 93% |
| Offal | 9% |
| Gutted fish, approx. (HOG) | 84% |
| Head, approx. | 7% |
| Head off, gutted | 77% |
| Fillet (skin on) | 56 - 64% |
| C-trim (skin on) | 60% |
| Fillet (skin off) | 47 - 56% |

Net weight
Weight of a product at any stage (GWT, fillet, portions). Only the weight of the fish part of the product (excl. ice or packaging), but including other ingredients in VAP

Primary processing
Gutted Weight Equivalent (GWT) / Head on Gutted (HOG)

Secondary processing
Any value added processing beyond GWT

Biomass
The total weight of live fish, where number of fish is multiplied by an average weight

Ensilage
Salmon waste from processing with added acid

BFCR
IB feed stock + feed purchase – UB feed stock Kg produced – weight on smolt release

EFCR
IB feed stock + feed purchase – UB feed stock Kg produced – mortality in Kg – weight on smolt release

Price Notifications
Nasdaq (FCA Oslo) - Head on gutted from Norway (weighted average superior quality)
FOB Miami - fillets from Chile (3-4 lb)
FOB Seattle - whole fish from Canada (10-12 lb)

Source: Kontali Analyse
Appendix

Price indices vs. FOB packing plant

| NASDAQ Index | - General sales and administration expenses ~ 0.75 NOK
| | = Former NOS/FHL-index
| | - Freight to Oslo
| | - Terminal Cost ~ 0.70 NOK
| | = Selling price farmers FOB packing plant

| SSB | - Freight to border
| | - Duty and taxes
| | - Adjusted to sizes and quality ~ 1.50 NOK*
| | - Freight to Oslo
| | - Terminal cost
| | = Selling price farmers FOB packing plant

| UB | - See text below
| | = Selling price farmers FOB packing plant

Several price indices for salmon are publicly available. The two most important providers of such statistics for Norwegian salmon are Nasdaq/Fish Pool and Statistics Norway (SSB). Urner Barry in the US provides a reference price for Chilean salmon in Miami and Canadian salmon in Seattle.

In Norway the price is found by deducting freight costs from the farm to Oslo and the terminal cost from the Nasdaq price (~0.70 NOK). If using the SSB custom statistics, you need to adjust for freight to border, duty and taxes, and for quality and contract sales to get the achieved spot price back to producer. The average difference between SSB price and FCA Oslo is ~1 NOK, which gives the average difference between SSB price and back to plant at NOK 1.50 (historically this difference fluctuates from week to week and will normally fall in the range of -2 to +4).

Calculating Urner Barry – Chilean fillets, back to GWT plant is more extensive. It is necessary to use UB prices for both 2/3lb and 3/4lb and adjust for quantity share, market handling (4 cent), and market commission (4.5%). In addition there are some adjustments which vary over time: premium fish share (~92%), reduced price on downgraded fish (~30%), airfreight (~USD 1.50/kg) and GWT to fillet yield (~70%).

* Average difference between SSB and return to packing plant
Source: Fishpool, Nasdaq, SSB, Norwegian Seafood Council, Urner Barry, Kontali Analyse
Appendix

Historic acquisitions and divestments

In Norway there have been 'countless' mergers between companies over the last decade. The list below shows only some of the larger ones in transaction value. In Scotland consolidation has also been very frequent. In Chile, there have been several acquisitions over the last two years. Canada's industry has been extensively consolidated with a few large players and some small companies.

See table on the next page.
<table>
<thead>
<tr>
<th>Year</th>
<th>Norway</th>
<th>Year</th>
<th>Norway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Hydro Seafoods - Sold from Norsk Hydro to Nutreco Aquaculture</td>
<td>2007</td>
<td>UFO Laks - Sold to Haugland Group</td>
</tr>
<tr>
<td>2001</td>
<td>Gjávikak - Sold to PanFish</td>
<td>2007</td>
<td>Anton Misund - Sold to Roma Gruppen</td>
</tr>
<tr>
<td>2001</td>
<td>Vest Laks - Sold to Austevoll Havsfiske</td>
<td>2007</td>
<td>Mico Fiskeoppdrett - Sold to Roma Gruppen</td>
</tr>
<tr>
<td>2001</td>
<td>Torris Products - Sold from Torris to Seafarm Invest</td>
<td>2008</td>
<td>Hamneidset - Sold to Eidsfjord Sjøfarm</td>
</tr>
<tr>
<td>2001</td>
<td>Gjåland Havbruk - Sold to Aqua Farms</td>
<td>2008</td>
<td>Misundlaks - Sold to Leroy Seafood Group</td>
</tr>
<tr>
<td>2001</td>
<td>All Lone - Sold to Sjøfri</td>
<td>2008</td>
<td>Hende Fiskeoppdrett - Sold to Salmar ASA</td>
</tr>
<tr>
<td>2001</td>
<td>Sandvoll Havbruk - Sold to Nutreco Aquaculture</td>
<td>2008</td>
<td>AS Tri - Sold to Norway Royal Salmon (NRS)</td>
</tr>
<tr>
<td>2001</td>
<td>Fosen Edelfisk - Sold to Salmar</td>
<td>2008</td>
<td>Feiry Fiskeoppdrett - Sold to Norway Royal Salmon</td>
</tr>
<tr>
<td>2001</td>
<td>Langestenlaks - Sold to Salmar</td>
<td>2008</td>
<td>Salmo Arctica - Sold to Norway Royal Salmon</td>
</tr>
<tr>
<td>2001</td>
<td>Tveit Gård - Sold to Alaker Fjordbruk</td>
<td>2008</td>
<td>Årøy Fiskeoppdrett - Sold to Norway Royal Salmon</td>
</tr>
<tr>
<td>2001</td>
<td>Petter Laks - Sold to Senja Sjøfarm</td>
<td>2008</td>
<td>Nor Seafood - Sold to Norway Royal Salmon</td>
</tr>
<tr>
<td>2001</td>
<td>Kråkevålslaks - Sold to Salmar</td>
<td>2008</td>
<td>Altafjord Laks - Sold to Norway Royal Salmon</td>
</tr>
<tr>
<td>2002</td>
<td>Amulaks - Sold to Follaks</td>
<td>2008</td>
<td>Leroy Seafood Group - Purchased by Austevoll Seafood</td>
</tr>
<tr>
<td>2002</td>
<td>Kyvamold Fiskeoppdrett - Sold to Rong Laks</td>
<td>2009</td>
<td>Skjærgårdsfisk - Sold to Lingslaks</td>
</tr>
<tr>
<td>2002</td>
<td>Matlodd Fisk - Sold to Bolaks</td>
<td>2009</td>
<td>Brillo Fiskeoppdrett - Sold to Norway Royal Salmon</td>
</tr>
<tr>
<td>2002</td>
<td>Sanden Fiskeoppdrett - Sold to Aqua Farms</td>
<td>2009</td>
<td>Polariaks II - Sold to Nova Sea</td>
</tr>
<tr>
<td>2002</td>
<td>Ørnes Fiskeoppdrett - Sold to Aqua Farms</td>
<td>2009</td>
<td>Fjordfarm - Sold to Blom Fiskeoppdrett</td>
</tr>
<tr>
<td>2002</td>
<td>Tøytysund Laks - Sold to Alaker Fjordbruk</td>
<td>2009</td>
<td>Fyllingeslaks - Sold to Eide Fjordbruk</td>
</tr>
<tr>
<td>2003</td>
<td>Nye Midnor - Sold from Sparebank1 Midtnorge to Lerøy Seafood Group</td>
<td>2009</td>
<td>Salaks merged with Reiaks</td>
</tr>
<tr>
<td>2003</td>
<td>Ishavslaks - Sold to Aurora to Volden Group</td>
<td>2009</td>
<td>65 new licenses granted</td>
</tr>
<tr>
<td>2003</td>
<td>Lodden Laks - Sold to Grieg Seafood</td>
<td>2010</td>
<td>Espevære Fiskeoppdrett - Sold to Bremnes Fysetry</td>
</tr>
<tr>
<td>2003</td>
<td>Finnmark Seafood - Sold to Follaks</td>
<td>2010</td>
<td>AL Nordtale - Sold to Alaker Fjordbruk</td>
</tr>
<tr>
<td>2003</td>
<td>Utilford Fisk - Sold to Nordlaks</td>
<td>2010</td>
<td>Nord Senja Fiskeindustri - Sold to Norway Royal Salmon</td>
</tr>
<tr>
<td>2003</td>
<td>Henningværslaks - Sold to Nordlaks</td>
<td>2010</td>
<td>Morpol Salmon - Sold to Blom Fiskeoppdrett</td>
</tr>
<tr>
<td>2004</td>
<td>Flatanger Akva - Sold to Salmar</td>
<td>2010</td>
<td>Fjord Drift - Sold to Tombre Fiskeanlegg</td>
</tr>
<tr>
<td>2004</td>
<td>Naustdal Fiskefarm/Bremanger Fiskerlaks - Sold to Firda Sjøfarm</td>
<td>2010</td>
<td>Henrico Laks - Sold to Haugland Group</td>
</tr>
<tr>
<td>2004</td>
<td>Fjordlaks - Sold to Firda Sjøfarm</td>
<td>2010</td>
<td>Romsagruppen - Sold to Salmar</td>
</tr>
<tr>
<td>2004</td>
<td>Snevik Salmon - Sold to Lerøy Seafood Group</td>
<td>2010</td>
<td>Støttelfisk / Marius Eikremvåk - Sold to Salmar</td>
</tr>
<tr>
<td>2004</td>
<td>Aure Havbruk / M. Ulfsnes - Sold from Sjøfri to Salmar</td>
<td>2010</td>
<td>Lund Fiskeoppdrett - Sold to Vikna Sjøfarm (Salmonor)</td>
</tr>
<tr>
<td>2005</td>
<td>Follaks - Sold to Cermor</td>
<td>2010</td>
<td>Sjøtroll Havbruk AS - 50.71% of the shares sold to Lerøy Seafood Group</td>
</tr>
<tr>
<td>2005</td>
<td>Aqua Farms - Sold to Panfish</td>
<td>2011</td>
<td>R. Lenes - Sold to Måsvåg Fiskeoppdrett</td>
</tr>
<tr>
<td>2005</td>
<td>Aurora Salmon (Part of company) - Sold from DNB Nor to Lerøy Seafood Group</td>
<td>2011</td>
<td>Eifjord Støttelfisk - Sold to Gries Sjøfarm</td>
</tr>
<tr>
<td>2005</td>
<td>Marine Harvest Bolga - Sold to Fjordfarm Invest</td>
<td>2011</td>
<td>Jaktfjord Laks - Sold to Morpol</td>
</tr>
<tr>
<td>2005</td>
<td>Aurora Salmon (Part of company) - Sold from DNB Nor to Polarisaks</td>
<td>2011</td>
<td>Krif Havbruk - Sold to Salmar</td>
</tr>
<tr>
<td>2005</td>
<td>Sjølaks - Sold from Marine Farms to Northern Lights Salmon</td>
<td>2011</td>
<td>Straume Fiskeoppdrett - Sold to Marine Harvest Norway</td>
</tr>
<tr>
<td>2005</td>
<td>Bolstad Fjordbruk - Sold to Haugland Group</td>
<td>2011</td>
<td>Bringvær Laks - Sold to Salmar</td>
</tr>
<tr>
<td>2005</td>
<td>Skjervfjellslaks - Sold to Nordlaks</td>
<td>2011</td>
<td>Nordfjord Havbruk - Changed name to Nordfjord Laks</td>
</tr>
<tr>
<td>2006</td>
<td>Fossen AS - Sold to Lerøy Seafood Group</td>
<td>2011</td>
<td>Villa Mjølarks - Sold to Salmar</td>
</tr>
<tr>
<td>2006</td>
<td>Marine Harvest N.V. - Acquired by Pan Fish ASA</td>
<td>2011</td>
<td>Karma Havbruk - Sold to E. Karsten Karstensen Fiskeoppdrett (50%) and Maria Havbruk (50.85)</td>
</tr>
<tr>
<td>2006</td>
<td>Fjord Seafood ASA - Acquired by Pan Fish ASA</td>
<td>2012</td>
<td>Skottneslaks - Sold to Eidsfjord Laks</td>
</tr>
<tr>
<td>2006</td>
<td>Marine Harvest Finnmark - Sold from Marine Harvest to Volden Group</td>
<td>2012</td>
<td>Villa Arctic - 10 licenses, etc. sold to Salmar</td>
</tr>
<tr>
<td>2006</td>
<td>Tøra Sea Farms/North Salmon - Sold to Villa Gruppen</td>
<td>2012</td>
<td>Pundstelett Laks - Sold to Nordlaks Holding</td>
</tr>
<tr>
<td>2006</td>
<td>Aakvik - Sold to Hydrotech</td>
<td>2012</td>
<td>Sharmesnes Akvakultur - Sold to Blom Fiskeoppdrett</td>
</tr>
<tr>
<td>2006</td>
<td>Hydrotech - Sold to Lerøy Seafood Group</td>
<td>2012</td>
<td>Ilavåg Matalaks - Sold to Bremnes Seashore</td>
</tr>
<tr>
<td>2006</td>
<td>Sønja Sjøfarm - Sold to Salmar ASA</td>
<td>2013</td>
<td>Morpol - sold to Marine Harvest</td>
</tr>
<tr>
<td>2006</td>
<td>Håls Fiskeoppdrett - Sold to Salmar ASA</td>
<td>2013</td>
<td>Villa Organico - 47.8% of shares sold to Lerøy Seafood Group</td>
</tr>
<tr>
<td>2006</td>
<td>Longfjordlaks - Sold to Mainstream</td>
<td>2013</td>
<td>Villa Organico - 50.4% of shares sold to SalMar</td>
</tr>
<tr>
<td>2006</td>
<td>Polarisaks - Sold to Mainstream</td>
<td>2013</td>
<td>Salmar Akvafiske - Sold to Nova Sea</td>
</tr>
<tr>
<td>2007</td>
<td>Veststar - Sold to Lerøy Seafood Group</td>
<td>2014</td>
<td>Skarven (Glima Fiskeoppdrett and Vik Fiskeoppdrett) - Sold to Nova Sea</td>
</tr>
<tr>
<td>2007</td>
<td>Volden Group - Sold to Giege Seafood</td>
<td>2014</td>
<td>Cermor - sold to Mitsubishi</td>
</tr>
<tr>
<td>2007</td>
<td>Arctic Seafood Trans - Sold to Salmar ASA</td>
<td>2015</td>
<td>EWO3 - 2 licenses, sold to Bolaks</td>
</tr>
<tr>
<td>2007</td>
<td>Arctic Seafood - Sold to Mainstream</td>
<td>2015</td>
<td>Senja Akvakulturcenter - Sold to Lerøy Aurora</td>
</tr>
<tr>
<td>2007</td>
<td>Fiskekultur - Sold to Haugland Group</td>
<td>2016</td>
<td>Fjordlaks Aqua - Sold to Hofseth International and Yokohama Reito</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td>2017</td>
<td>NGS acquired Midt Norsk Havbruk</td>
</tr>
<tr>
<td>Year</td>
<td>UK</td>
<td>Year</td>
<td>Chile</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1996</td>
<td>Shetland Salmon products - Sold to HSF GSP</td>
<td>1999</td>
<td>Chisal - Sold to Salmones Multexport</td>
</tr>
<tr>
<td>1996</td>
<td>Shetland Salmon to MH</td>
<td>2000</td>
<td>Salmon America - Sold to Fjord Seafood</td>
</tr>
<tr>
<td>1996</td>
<td>Gillha, Mainland, Tayvallich, Mull Salmon - All sold to Aquascot</td>
<td>2000</td>
<td>Salmones Tecmar - Sold to Fjord Seafood</td>
</tr>
<tr>
<td>1997</td>
<td>Summer Isles Salmon - Sold to HSF GSP</td>
<td>2000</td>
<td>Salmones Mainstream - Sold to Cermak</td>
</tr>
<tr>
<td>1997</td>
<td>Atlantic West - Sold to West Minch</td>
<td>2001</td>
<td>Pesquera Bicola - Sold to Stolt Nielsen</td>
</tr>
<tr>
<td>1998</td>
<td>Gaetic Seafood UK - Sold to Stolt Seafoods</td>
<td>2004</td>
<td>Salmons Andes - Sold to Salmones Mainstream</td>
</tr>
<tr>
<td>1998</td>
<td>Mainland Salmon - Sold to Aquascot</td>
<td>2004</td>
<td>Stolt Seafarm - Merced with Marine Harvest</td>
</tr>
<tr>
<td>1999</td>
<td>Hydro Seafood GSP - Initially sold to Nutreco as part of Hydro Seafood deal Joseph Johnston & Sons - Sold to Loch Duart</td>
<td>2005</td>
<td>Pesquera Chilheue - Sold to GM Tornegaleones</td>
</tr>
<tr>
<td>1999</td>
<td>Hydro Seafood GSP - Initially sold to Nutreco as part of Hydro Seafood deal</td>
<td>2005</td>
<td>Aquas Claras - Sold to Acua Chile</td>
</tr>
<tr>
<td>1999</td>
<td>Hydro Seafood GSP - Initially sold to Nutreco as part of Hydro Seafood deal Joseph Johnston & Sons - Sold to Loch Duart</td>
<td>2005</td>
<td>Salmones Chiloe - Sold to Aqua Chile</td>
</tr>
<tr>
<td>1999</td>
<td>Hydro Seafood GSP - Initially sold to Nutreco as part of Hydro Seafood deal Joseph Johnston & Sons - Sold to Loch Duart</td>
<td>2005</td>
<td>Robinson Crusoe - Sold to Aqua Chile</td>
</tr>
<tr>
<td>2000</td>
<td>Aquascot Farming - Sold from Aquascot to Cermak</td>
<td>2006</td>
<td>GM Tornegaleones - change name to Marine Farm GMT</td>
</tr>
<tr>
<td>2000</td>
<td>Shetland Norse - Sold to EWOS</td>
<td>2006</td>
<td>Merger Pan Fish - Marine Harvest - Fjord Seafood</td>
</tr>
<tr>
<td>2000</td>
<td>Hovbruk (Salmar & Leray Seafood Group) from Nutreco</td>
<td>2007</td>
<td>Pacific Star - Sold to Andre Navarro</td>
</tr>
<tr>
<td>2001</td>
<td>Loschinger UK - Sold to Hjaltland</td>
<td>2007</td>
<td>Salmones Cupuqaelan - Sold to Cooke Aqua</td>
</tr>
<tr>
<td>2001</td>
<td>Wise - Sold to Fjord Seafood</td>
<td>2009</td>
<td>Patagonia Salmon Farm - Sold to Marine Farm GMT</td>
</tr>
<tr>
<td>2001</td>
<td>Water Sound / Hoganess - Sold to Lakeirector Marine</td>
<td>2010</td>
<td>Comanchacho (salmon division) - Sold to Lukic Group</td>
</tr>
<tr>
<td>2001</td>
<td>Ardvar Salmon - Sold to Loch Duart</td>
<td>2011</td>
<td>Salmones Humboldt - Sold to Mitsubishi</td>
</tr>
</tbody>
</table>
Appendix

Breeding

Broodstock: Breed on selected characteristics eg. growth, disease resistance, maturation, colour

Spawning and fertilisation: Eggs stripped from females and mixed with milt

Eyed eggs: After 25-30 days fertilised eggs show "eyes". The development is depending on temp. 5000 eggs/litre

Alevins: Small (<2.5 cm), Yolk sack providing first stage nutrition. When absorbed the fish start feeding

Fry/Parr: Start feeding of small fish. Temp 12-14°C. Fish is growing in FW sites to around 60-100g. Vaccination and grading important. Adaptation to life in seawater (smolification)

Growing

Transfer to seawater sites by wellbeater tracks

On-growing in seawater sites to around 4.5-5.5 kg (ca 16-22 months depending on temp). Transport to packing stations

Harvesting

Slaughter, gutting and packing

Processing

The total production cycle takes approx. 10-16 months in freshwater plus 14-22 months in seawater. In sum 24-36 months (in Norway)
Appendix

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>MOWI brand launch</td>
</tr>
<tr>
<td>2018</td>
<td>The company once again becomes Mowi</td>
</tr>
<tr>
<td>2017-18</td>
<td>Acquisition of Gray Aqua Group and Northern Harvest, and establishes Mowi Canada East</td>
</tr>
<tr>
<td>2016</td>
<td>Entered into joint venture with Deep Sea Supply to build, own and operate aquaculture vessels</td>
</tr>
<tr>
<td>2013</td>
<td>Acquisition of Morpol</td>
</tr>
<tr>
<td>2012</td>
<td>Feed division established</td>
</tr>
<tr>
<td>2006</td>
<td>PanFish acquires Marine Harvest</td>
</tr>
<tr>
<td>2005</td>
<td>Marine Harvest and Stolt Sea Farm merge</td>
</tr>
<tr>
<td></td>
<td>PanFish acquires Fjord Seafood</td>
</tr>
<tr>
<td></td>
<td>John Fredriksen acquires PanFish</td>
</tr>
<tr>
<td>2000</td>
<td>Nutreco acquires Hydro Seafood. New company name: Marine Harvest</td>
</tr>
<tr>
<td>1999</td>
<td>Nutreco acquires the Scottish farming operations started by Unilever</td>
</tr>
<tr>
<td>1998</td>
<td>Mowi is discontinued as a company name</td>
</tr>
<tr>
<td></td>
<td>Hydro Seafood has sites in Norway, Scotland and Ireland</td>
</tr>
<tr>
<td>1996</td>
<td>Hydro Seafood acquires Frøya holding</td>
</tr>
<tr>
<td>1990</td>
<td>Hydro Seafood registered 25 June</td>
</tr>
<tr>
<td></td>
<td>Restructuring and consolidation of the industry starts</td>
</tr>
<tr>
<td>1985</td>
<td>Hydro increases its holding to 100%</td>
</tr>
<tr>
<td>1983</td>
<td>Mowi buys GSP in Scotland and Fanad in Ireland</td>
</tr>
<tr>
<td>1975</td>
<td>Mowi becomes a recognised brand</td>
</tr>
<tr>
<td>1969</td>
<td>Hydro increases its holding to 50%</td>
</tr>
<tr>
<td>1965</td>
<td>Mowi starts working with salmon in Norway</td>
</tr>
<tr>
<td>1964</td>
<td>The adventure of Mowi begins</td>
</tr>
</tbody>
</table>
Appendix

Mowi

Mowi is the world’s largest producer of farmed salmon, both by volume and revenue, offering seafood products to approximately 70 countries world-wide. The company are represented in 25 countries, employing 14 537 people.

Total revenue for Mowi in 2018 was MEUR 3,814.5 and the harvest quantity of Atlantic salmon was 375,237 tonnes (GWT), which was 17% of the total industry output.

Business areas

<table>
<thead>
<tr>
<th>Position</th>
<th>Operations</th>
<th>Volumes</th>
<th>Op EBIT 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>Started in Norway in 2014. Scotland to commence operations in 2019</td>
<td>520,000 tonnes capacity</td>
<td>EUR 9.6m</td>
</tr>
<tr>
<td>Farming</td>
<td>Norway, Chile, Scotland, Canada, Ireland, Faroe Islands</td>
<td>375,237 tonnes in 2018</td>
<td>EUR 625.2m</td>
</tr>
<tr>
<td>Sales and Marketing</td>
<td>Operations in 25 countries</td>
<td></td>
<td>EUR 139.0m</td>
</tr>
</tbody>
</table>
Appendix

Sources of industry and market information

Mowi:
www.mowi.com

Other

Kontali Analyse:
www.kontali.no

Intrafish:
www.intrafish.no

Norwegian Directorate of Fisheries:
www.fiskeridirektoratet.no

Norwegian Ministry of Trade, Industry and Fisheries:
www.fkd.dep.no

Norwegian Seafood Council:
www.seafood.no

Norwegian Seafood Federation:
www.norskjemat.no

Chilean Fish Directorate:
www.semnapersca.cl

FAO:
www.fao.org

International fishmeal and fish oil org.:
www.iffo.net

Laks er viktig for Norge:
www.laks.no

Price statistics

Fish Pool Index:
www.fishpool.eu

Kontali Analyse (subscription based):
www.kontali.no

Urner Barry (subscription based):
www.urnerbarry.com

Statistics Norway (SSB):
www.ssb.no/laks_en/

NASDAQ:
www.salmonprice.nasdaqomxtrader.com